Biomechanical Effects of Implant Materials on Posterior Lumbar Interbody Fusion: Comparison of Polyetheretherketone and Titanium Spacers Using Finite Element Analysis and Considering Bone Density
Few biomechanical data exist regarding whether the polyetheretherketone (PEEK) spacer or titanium spacer is better for posterior lumbar interbody fusion (PLIF). This study evaluated the biomechanical influence that these types of spacers with different levels of hardness exert on the vertebra by using finite element analysis including bone strength distribution. To evaluate the risk of spacer subsidence for PLIF, we built a finite element model of the lumbar spine using computed tomography data of osteoporosis patients. Then, we simulated PLIF in L3/4 and built models with the hardness of the interbody spacer set as PEEK and titanium. Bones around the spacer were subjected to different load conditions. Then, fracture elements and some stress states of the two modalities were compared. In both models of PLIF simulation, fracture elements and stress were concentrated in the bones around the spacer. Fracture elements and stress values of the model simulating the PEEK spacer were significantly smaller compared to those of the titanium simulation model. For PLIF of osteoporotic vertebrae, this suggested that the PEEK spacer is in a mechanical environment less susceptible to subsidence caused by microfractures of bone tissue and bone remodeling-related fusion aspects. Therefore, PEEK spacers are bio-mechanically more useful.
References
[1]
Cloward, R.B. (1953) The Treatment of Ruptured Lumbar Intervertebral Discs by Vertebral Body Fusion. I. Indications, Operative Technique, after Care. Journal of Neurosurgery, 10, 154-168.
https://doi.org/10.3171/jns.1953.10.2.0154
[2]
Brantigan, J.W., McAfee, P.C., Cunningham, B.W., Wang, H. and Orbegoso, C.M. (1994) Interbody Lumbar Fusion Using a Carbon Fiber Cage Implant versus allograft Bone: An Investigational Study in the Spanish Goat. Spine, 19, 1436-1444. https://doi.org/10.1097/00007632-199407000-00002
[3]
Brantigan, J.W. and Steffee, A.D. (1993) A Carbon Fiber Implant to Aid Interbody Lumbar Fusion: Two-Year Clinical Results in the First 26 Patients. Spine, 18, 2106-2117.
https://doi.org/10.1097/00007632-199310001-00030
[4]
Matge, G. (2002) Cervical Cages Fusion with 5 Dif-ferent Implants: 250 Cases. Acta Neurochirurgica, 144, 539-549. https://doi.org/10.1007/s00701-002-0939-0
Eck, K.R., Bridwell, K.H., Ungacta, F.F., Lapp, M.A., Lenke, L.G. and Riew, K.D. (2000) Analysis of Titanium Mesh Cages in Adults with Minimum Two-Year Follow-Up. Spine, 25, 2407-2415.
https://doi.org/10.1097/00007632-200009150-00023
[7]
Kuslich, S.D., Danielson, G., Dowdle, J.D., Sherman, J., Fredrickson, B., Yuan, H. and Griffith, S.L. (2000) Four-Year Follow-Up Results of Lumbar Spine Arthrodesis Using the Bagby and Kuslich Lumbar Fusion Spacer. Spine, 25, 2656-2662. https://doi.org/10.1097/00007632-200010150-00018
[8]
McAfee, P.C. (1999) Interbody Fusion Spacers in Reconstructive Operations on the Spine. The Journal of Bone and Joint Surgery—American Volume, 81, 859-880. https://doi.org/10.2106/00004623-199906000-00014
[9]
Nemoto, O., Asazuma, T., Yato, Y., Imabayashi, H., Yasuoka, H. and Fujikawa, A. (2014) Comparison of Fusion Rates Following Transforaminal Lumbar Interbody Fusion Using Polyetheretherketone Cages or Titanium Cages with Transpedicular Instrumentation. European Spine Journal, 23, 2150-2155.
https://doi.org/10.1007/s00586-014-3466-9
[10]
Wang, Z., Fu, S., Wu, Z.X., Zhang, Y. and Lei, W. (2013) Ti2448 Pedicle Screw System Augmentation for Posterior Lumbar Interbody Fusion. Spine, 38, 2008-2015. https://doi.org/10.1097/BRS.0b013e3182a76fec
[11]
Couvertier, M., Germaneau, A., Saget, M., Dupré, J.C., Doumalin, P., Brémand, F., Hesser, F., Brèque, C., Roulaud, M., Monlezun, O., Vendeuvre, T. and Rigoard, P. (2017) Biomechanical Analysis of the Thoracolumbar Spine under Physiological Loadings: Experimental Motion Data Corridors for Validation of Finite Element Models. Proceedings of the Institution of Mechanical Engineers. Part H, 231, 975-981.
https://doi.org/10.1177/0954411917719740
[12]
Lee, C.H., Landham, P.R., Eastell, R., Adams, M.A., Dolan, P. and Yang, L. (2017) Development and Validation of a Subject-Specific Finite Element Model of the Functional Spinal Unit to Predict Vertebral Strength. Proceedings of the Institution of Mechanical Engineers. Part H, 231, 821-830.
https://doi.org/10.1177/0954411917708806
[13]
Vadapalli, S., Sairyo, K., Goel, V.K., Robon, M., Biyani, A., Khandha, A. and Ebraheim, N.A. (2006) Biomechanical Rationale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion—A Finite Element Study. Spine, 31, E992-998. https://doi.org/10.1097/01.brs.0000250177.84168.ba
[14]
Xiao, Z., Wang, L., Gong, H. and Zhu, D. (2012) Biomechanical Evaluation of Three Surgical Scenarios of Posterior Lumbar Interbody Fusion by Finite Element Analysis. BioMedical Engineering OnLine, 11, 31.
https://doi.org/10.1186/1475-925X-11-31
[15]
Lu, Y., Rosenau, E., Paetzold, H., Klein, A., Püschel, K., Morlock, M.M. and Huber, G. (2013) Strain Changes on the Cortical Shell of Vertebral Bodies due to Spine Ageing: A Parametric Study Using a Finite Element Model Evaluated by Strain Measurements. Proceedings of the Institution of Mechanical Engineers. Part H, 227, 1265-1274. https://doi.org/10.1177/0954411913501293
[16]
Imai, K., Ohnishi, I., Bessho, M. and Nakamura, K. (2006) Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site. Spine, 31, 1789-1794. https://doi.org/10.1097/01.brs.0000225993.57349.df
[17]
Keyak, J.H., Meagher, J.M., Skinner H.B. and Mote Jr., C.D. (1990) Automated Three-Dimensional Finite Element Modelling of Bone: A New Method. Journal of Biomedical Engineering, 12, 389-397.
https://doi.org/10.1016/0141-5425(90)90022-F
[18]
Matsuura, Y., Giambini, H., Ogawa, Y., Fang, Z., Thoreson, A.R., Yaszemski, M.J., Lu, L. and An, K.N. (2014) Specimen-Specific Nonlinear Finite Element Modeling to Predict Vertebrae Fracture Loads after Vertebroplasty. Spine, 39, E1291-1296. https://doi.org/10.1097/BRS.0000000000000540
[19]
Keyak, J.H., Rossi, S.A., Jones, K.A. and Skinner, H.B. (1998) Prediction of Femoral Fracture Load Using Automated Finite Element Modeling. Journal of Biomechanics, 31, 125-133.
https://doi.org/10.1016/S0021-9290(97)00123-1
[20]
Tsuang, Y.H., Chiang, Y.F., Hung, C.Y., Wei, H.W., Huang, C.H. and Cheng, C.K. (2009) Comparison of Cage Application Modality in Posterior Lumbar Interbody Fusion with Posterior Instrumentation—A Finite Element Study. Medical Engineering & Physics, 31, 565-570. https://doi.org/10.1016/j.medengphy.2008.11.012
[21]
Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K. and Nakamura, K. (2007) Prediction of Strength and Strain of the Proximal Femur by a CT-Based Finite Element Method. Journal of Biomechanics, 40, 1745-1753. https://doi.org/10.1016/j.jbiomech.2006.08.003
[22]
Kurtz, S.M. and Devine, J.N. (2007) PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants. Biomaterials, 28, 4845-4869. https://doi.org/10.1016/j.biomaterials.2007.07.013
[23]
Pelletier, M.H., Cordaro, N., Punjabi, V.M., Waites, M., Lau, A. and Walsh, W.R. (2016) PEEK versus Ti Interbody Fusion Devices: Resultant Fusion, Bone Apposition, Initial and 26-Week Biomechanics. Clinical Spine Surgery, 29, E208-E214. https://doi.org/10.1097/BSD.0b013e31826851a4
[24]
Oxland, T.R., Lund, T., Jost, B., Cripton, P., Lippuner, K., Jaeger, P. and Nolte, L.P. (1996) The Relative Importance of Vertebral Bone Density and Disc Degeneration in Spinal Flexibility and Interbody Implant Performance. Spine, 21, 2558-2569. https://doi.org/10.1097/00007632-199611150-00005
[25]
Boden, S. and Sumner, D. (1995) Biologic Factors Affecting Spinal Fusion and Bone Regeneration. Spine, 20, S102-S112. https://doi.org/10.1097/00007632-199512151-00007
[26]
Sethi, A., Lee, S. and Vaidya, R. (2009) Transforaminal Lumbar Interbody Fusion using Unilateral Pedicle Screws and a Translaminar Screw. European Spine Journal, 18, 430-434.
https://doi.org/10.1007/s00586-008-0825-4
[27]
Oh, K.W., Lee, J.H., Lee, D.Y. and Shim, H.J. (2017) The Correlation between Cage Subsidence, Bone Mineral Density, and Clinical Results in Posterior Lumbar Interbody Fusion. Clinical Spine Surgery, 30, E683-E689.
https://doi.org/10.1097/BSD.0000000000000315
[28]
Lee, J.H., Jeon, D.W., Lee, S.J., Chang, B.S. and Lee, C.K. (2010) Fusion Rates and Subsidence of Morselized Local Bone Grafted in Titanium Cages in Posterior Lumbar Interbody Fusion using Quantitative Three-Dimensional Computed Tomography Scans. Spine, 35, 1460-1465.
https://doi.org/10.1097/BRS.0b013e3181c4baf5
[29]
Herrera, A., Panisello, J.J., Ibarz, E., Cegonino, J., Puérto-las, J.A. and Gracia, L. (2009) Comparison between DEXA and Finite Element Studies in the Long-Term Bone Remodeling of an Anatomical Femoral Stem. Journal of Biomechanical Engineering, 131, Article ID: 041013. https://doi.org/10.1115/1.3072888
[30]
Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B. and Slooff, T.J. (1987) Adaptive Bone-Remodeling Theory Applied to Prosthetic-Design Analysis. Journal of Biomechanics, 20, 1135-1150.
https://doi.org/10.1016/0021-9290(87)90030-3
[31]
Lee, J.H., Lee, J.H., Park, J.W. and Lee, H.S. (2011) Fusion Rates of a Morselized Local Bone Graft in Polyetheretherketone Spacers in Posterior Lumbar Interbody Fusion by Quantitative Analysis using Consecutive Three-Dimensional Computed Tomography Scans. The Spine Journal, 11, 647-653.
https://doi.org/10.1016/j.spinee.2011.04.029
[32]
Schimmel, J.J., Poeschmann, M.S., Horsting, P.P., Schonfeld, D.H., van Limbeek, J. and Pavlov, P.W. (2016) Comparison between DEXA and Finite Element Studies in the Long-Term Bone Remodeling of an Anatomical Femoral Stem. Clinical Spine Surgery, 29, E252-E258. https://doi.org/10.1097/BSD.0b013e31826eaf74
[33]
Seaman, S., Kerezoudis, P., Bydon, M., Torner, J.C. and Hitchon, P.W. (2017) Titanium vs. Polyetheretherketone (PEEK) Interbody Fusion: Meta-Analysis and Review of the Literature. Journal of Clinical Neuroscience, 44, 23-29. https://doi.org/10.1016/j.jocn.2017.06.062
[34]
Tawara, D., Sakamoto, J., Murakami, H., Kawahara, N., Oda, J. and Tomita, K. (2010) Mechanical Therapeutic Effects in Osteoporotic L1-Vertebrae Evaluated by Nonlinear Patient-Specific Finite Element Analysis. Journal of Biomechanical Science and Engineering, 5, 499-514. https://doi.org/10.1299/jbse.5.499