全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimation of CO2 Storage Capacity in the Real Sub-Seabed Sediments by Gas Hydrate

DOI: 10.4236/jfcmv.2018.62008, PP. 82-94

Keywords: CO2 Capture and Storage, Sub-Seabed CO2 Storage, CO2 Hydrate Formation, Two-Phase Flow, Sub-Seabed Sediments, CO2 Storage Capacity

Full-Text   Cite this paper   Add to My Lib

Abstract:

Beyond conventional methods for CO2 capture and storage, a promising technology of sub-seabed CO2 storage in the form of gas hydrate has come into the limelight nowadays. In order to estimate CO2 storage capacity in the real sub-seabed sediments by gas hydrate, a large-scale geological model with the radius of 100 m and the thickness of 160 m was built in this study, and the processes of CO2 injection and CO2 hydrate formation in the sediments with two-phase flow were simulated numerically at three different injection rates of 10 ton/day, 50 ton/day, and 100 ton/day for an injection period of 150 days. Then, the evolutions of CO2 reaction, free CO2, and hydrate formation over time were analyzed quantitatively, and the spatial distributions of the physical properties in the sediments were presented to investigate the behaviors of CO2 hydrate formation in the sediments with two-phase flow. For CO2 storage capacity, a total amount of 15,000-ton CO2 can be stored safely in the sediments at the injection rate of 100 ton/day for 150 days, and a maximum amount of 36,500-ton CO

References

[1]  (Core Writing Team) Pachauri, R.K. and Meyer, L.A. (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.
http://www.ipcc.ch/report/ar5/syr/
[2]  Hulme, M., Jenkins, G.J., Lu, X., Turnpenny, J.R., Mitchell, T.D., Jones, R.G., Lowe, J., Murphy, J.M., Hassell, D., Boorman, P., McDonald, R. and Hill, S. (2002) Climate Change Scenarios for the United Kingdom: The UKCIP02 Scientific Report, Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich.
http://artefacts.ceda.ac.uk/badc_datadocs/link/UKCIP02_tech.pdf
[3]  Nordbotten, J.M., Celia, M.A. and Bachu, S. (2005) Injection and Storage of CO2 in Deep Saline Aquifers: Analytical Solution for CO2 Plume Evolution during Injection. Transport in Porous Media, 58, 339-360.
https://doi.org/10.1007/s11242-004-0670-9
[4]  Goodman, A., Bromhal, G., Strazisar, B., Rodosta, T., Guthrie, W., Allen, D. and Guthrie, G. (2013) Comparison of Methods for Geologic Storage of Carbon Dioxide in Saline Formations. International Journal of Greenhouse Gas Control, 18, 329-342.
https://doi.org/10.1016/j.ijggc.2013.07.016
[5]  Bachu, S. (2015) Review of CO2 Storage Efficiency in Deep Saline Aquifers. International Journal of Greenhouse Gas Control, 40, 188-202.
https://doi.org/10.1016/j.ijggc.2015.01.007
[6]  Birkholzer, J.T., Oldenburg, C. and Zhou, Q. (2015) CO2 Migration and Pressure Evolution in Deep Saline Aquifers. International Journal of Greenhouse Gas Control, 40, 203-220.
https://doi.org/10.1016/j.ijggc.2015.03.022
[7]  Gorecki, C.D., Ayash, S.C., Liu, G., Braunberger, J.R. and Dotzenrod, N.W. (2015) A Comparison of Volumetric and Dynamic CO2 Storage Efficiency in Deep Saline Formations. International Journal of Greenhouse Gas Control, 42, 213-225.
https://doi.org/10.1016/j.ijggc.2015.07.018
[8]  De Silva, G.P.D., Ranjith, P.G. and Perera, M.S.A. (2015) Geochemical Aspects of CO2 Sequestration in Deep Saline Aquifers: A Review. Fuel, 155, 128-143.
https://doi.org/10.1016/j.fuel.2015.03.045
[9]  Drange, H., Alendal, G. and Johannessen, O.M. (2001) Ocean Release of Fossil Fuel CO2: A Case Study. Geophysical Research Letters, 28, 2637-2640.
https://doi.org/10.1029/2000GL012609
[10]  Kano, Y., Sato, T., Kita, J., Hirabayashi, S. and Tabeta, S. (2010) Multi-Scale Modelling of CO2 Dispersion Leaked from Seafloor off Japanese Coast. Marine Pollution Bulletin, 60, 215-224.
https://doi.org/10.1016/j.marpolbul.2009.09.024
[11]  Mori, C., Sato, T., Kano, Y., Oyama, H., Aleynik, D., Tsumune, D. and Maeda, Y. (2015) Numerical Study of the Fate of CO2 Purposefully Injected into the Sediment and Seeping from Seafloor in Ardmucknish Bay. International Journal of Greenhouse Gas Control, 38, 153-161.
https://doi.org/10.1016/j.ijggc.2014.11.023
[12]  Inui, M. and Sato, T. (2006) Economical Feasibility Study on CO2 Sequestration in the Form of Gas Hydrate under Seafloor. Journal of the Japan Society of Naval Architects and Ocean Engineers, 3, 35-46. (In Japanese)
[13]  Kvamme, B., Graue, A., Buanes, T., Kuznetsova, T. and Ersland, G. (2007) Storage of CO2 in Natural Gas Hydrate Reservoirs and the Effect of Hydrate as an Extra Sealing in Cold Aquifers. International Journal of Greenhouse Gas Control, 1, 236-246.
https://doi.org/10.1016/S1750-5836(06)00002-8
[14]  Nakashima, T., Sato, T. and Inui, M. (2013) Numerical Modeling of Hydrate Formation in Sand Sediment Simulating Sub-Seabed CO2 Storage in the Form of Gas Hydrate. Energy Procedia, 37, 5986-5993.
https://doi.org/10.1016/j.egypro.2013.06.526
[15]  Seo, Y., Park, S., Kang, H., Ahn, Y., Lim, D., Kim, S., Lee, J., Lee, J., Ahn, T., Seo, Y. and Lee, H. (2016) Isostructural and Cage-Specific Replacement Occurring in sII Hydrate with External CO2/N2 Gas and Its Implications for Natural Gas Production and CO2 Storage. Applied Energy, 178, 579-586.
https://doi.org/10.1016/j.apenergy.2016.06.072
[16]  Jager, A., Vins, V., Span, R. and Hruby, J. (2016) Model for Gas Hydrates Applied to CCS Systems Part III. Results and Implementation in TREND 2.0. Fluid Phase Equilibria, 429, 55-66.
https://doi.org/10.1016/j.fluid.2016.08.027
[17]  Liu, Y., Wang, P., Yang, M., Zhao, Y., Zhao, J. and Song, Y. (2018) CO2 Sequestration in Depleted Methane Hydrate Sandy Reservoirs. Journal of Natural Gas Science and Engineering, 49, 428-434.
https://doi.org/10.1016/j.jngse.2017.10.023
[18]  Massah, M., Sun, D., Sharifi, H. and Englezos, P. (2018) Demonstration of Gas-Hydrate Assisted Carbon Dioxide Storage through Horizontal Injection in Lab-Scale Reservoir. The Journal of Chemical Thermodynamics, 117, 106-112.
https://doi.org/10.1016/j.jct.2017.09.019
[19]  Yu, T., Sato, T., Nakashima, T., Inui, M. and Oyama, H. (2016) An Integrated Model for CO2 Hydrate Formation in Sand Sediments for Sub-Seabed CO2 Storage. International Journal of Greenhouse Gas Control, 52, 250-269.
https://doi.org/10.1016/j.ijggc.2016.07.009
[20]  Moridis, G.J., Kowalsky, M.B. and Pruess, K. (2008) TOUGH+HYDRATE v1.0 User’s Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media. LBNL-0149E.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.463.3045&rep=rep1&type=pdf
[21]  Tanaka, Y., Sawada, Y., Tanase, D., Tanaka, J., Shiomi, S. and Kasukawa, T. (2017) Tomakomai CCS Demonstration Project of Japan, CO2 Injection in Process. Energy Procedia, 114, 5836-5846.
https://doi.org/10.1016/j.egypro.2017.03.1721
[22]  Sun, J., Ning, F., Zhang, L., Liu, T., Peng, L., Liu, Z., Li, C. and Jiang, G. (2016) Numerical Simulation on Gas Production from Hydrate Reservoir at the 1st Offshore Test Site in the Eastern Nankai Trough. Journal of Natural Gas Science and Engineering, 30, 64-76.
https://doi.org/10.1016/j.jngse.2016.01.036
[23]  Song, H., Jiang, W., Zhang, W. and Hao, T. (2002) Progress on Marine Geophysical Studies of Gas Hydrates. Progress in Geophysics, 17, 224-229. (In Chinese)
[24]  Kamath, V.A. (1984) Study of Heat Transfer Characteristics during Dissociation of Gas Hydrates in Porous Media. Ph.D. Thesis, University of Pittsburgh, Pittsburgh.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133