全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ion Nonthermality Induced Nonlinear Dust Acoustic Wave Propagation in a Complex Plasma in Presence of Weak Secondary Electron Emission from Dust Grains

DOI: 10.4236/jmp.2018.95059, PP. 961-975

Keywords: Complex Plasma, Ion Nonthermality, Weak Secondary Electron Emission, Adiabaticity and Nonadiabaticity

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we have investigated the effect of ion nonthermality on nonlinear dust acoustic wave propagation in a complex plasma in presence of weak secondary electron emission from dust grains. Equilibrium dust charge in this case is negative. Dusty plasma under our consideration consists of inertialess nonthermal ions, Boltzman distributed primary and secondary electrons and negatively charged inertial dust grains. Both adiabatic and nonadiabatic dust charge variations have been taken into account. Our analysis shows that in case of adiabatic dust charge variation, at a fixed non-zero ion nonthermality increasing secondary electron emission decreases amplitude and increases width of the rarefied dust acoustic soliton whereas for a fixed secondary electron yield increasing ion nonthermality increases amplitude and decreases width of such rarefied dust acoustic soliton. Thus shape of the soliton may be retained if strength of both the secondary electron yield and the ion nonthermality are increased. Nonadiabatic dust charge variation shows that, at fixed non-zero ion nonthermality, increasing secondary electron emission suppresses oscillation of oscillatory dust acoustic shock at weak nonadiabaticity and pronounces monotonicity of monotonic dust acoustic shock at strong nonadiabaticity. On the other hand at a fixed value of the secondary electron yield, increasing ion nonthermality enhances oscillation of oscillatory dust acoustic shock at weak nonadiabaticity and reduces monotonicity of monotonic dust acoustic shock at strong nonadiabaticity. Thus nature of dust acoustic shock may also remain unchanged if both secondary electron yield and ion nonthermality are increased.

References

[1]  Meyer-Vernet, N. (1982) Astronomy & Astrophysics, 105, 98.
[2]  Whipple, E.C. (1981) Reports on Progress in Physics, 44, 1197.
https://doi.org/10.1088/0034-4885/44/11/002
[3]  Horanyi, M. (1996) Annual Review of Astronomy and Astrophysics, 34, 383-418.
https://doi.org/10.1146/annurev.astro.34.1.383
[4]  Hachenberg, O. and Brauer, W. (1959) Advances in Electronics and Electron Physics, 11, 413-499.
https://doi.org/10.1016/S0065-2539(08)60999-3
[5]  Asbridge, J.R., Bame, S.J. and Strong, I.B. (1968) Journal of Geophysical Research, 73, 5777.
https://doi.org/10.1029/JA073i017p05777
[6]  Feldman, W.C., Anderson, S.J., Bame, J., et al. (1983) Journal of Geophysical Research, 88, 96.
https://doi.org/10.1029/JA088iA01p00096
[7]  Ludin, R., Zakharov, A., Pellimen, R., et al. (1989) Nature (London), 341, 609-612.
https://doi.org/10.1038/341609a0
[8]  Sarkar, S., Maity, S. and Banerjee, S. (2011) Physicas Scripta, 84, Article ID: 045501.
https://doi.org/10.1088/0031-8949/84/04/045501
[9]  Sarkar, S. and Maity, S. (1997) Physics of Plasmas, 4, 253.
https://doi.org/10.1063/1.872086
[10]  Sarkar, S. and Bhakta, S. (2016) Journal of Modern Physics, 7, 74-86.
https://doi.org/10.4236/jmp.2016.71008
[11]  Bhakta, S. and Sarkar, S. (2017) AIP Advances, 7, Article ID: 075113.
https://doi.org/10.1063/1.4985747
[12]  Bhakta, S., Ghosh, U. and Sarkar, S. (2017) Physics of Plasmas, 24, Article ID: 023704.
https://doi.org/10.1063/1.4976711
[13]  Bhakta, S. and Sarkar, S. (2017) Physics of Plasmas, 24, Article ID: 073706.
https://doi.org/10.1063/1.4990553
[14]  Xie, B.S., He, K.F. and Huang, Z.Q. (1998) Physics Letters A, 247, 403-409.
https://doi.org/10.1016/S0375-9601(98)00616-1
[15]  Duan, W.-S. (2004) Chinese Physics, 13, 5.
https://doi.org/10.1088/1009-1963/13/1/002
[16]  Elwakil, S.A., Zahran, M.A., El-Shewy, E.K. and Mowafy, A.E. (2011) Advances in Space Research, 48, 1067-1075.
https://doi.org/10.1016/j.asr.2011.04.034
[17]  Chen, J.-H. and Wei, N.-X. (2009) Communications in Theoretical Physics, 51, 524-528.
https://doi.org/10.1088/0253-6102/51/3/29
[18]  Xie, B., He, K. and Huang, Z. (1998) Chinese Physics Letters, 15, 12.
[19]  Gupta, M.R., Sarkar, S., Ghosh, S., Debnath, M. and Khan, M. (2001) Physical Review E, 63, Article ID: 046406.
[20]  Ghosh, S., Sarkar, S., Khan, M. and Gupta, M.R. (2001) IEEE Transactions on Plasma Science, 29, 409.
[21]  Ghosh, S., Sarkar, S., Khan, M., Avinash, K. and Gupta, M.R. (2003) Physics of Plasmas, 10, 977-983.
https://doi.org/10.1063/1.1555621
[22]  Wang, Y., Guo, C., Jiang, X., Zhou, Z. and Ni, X. (2010) Physics of Plasmas, 17, Article ID: 113701.
https://doi.org/10.1063/1.3504223
[23]  Wang, Y., Guo, X., Lu, Y. and Wang, X. (2016) Physics Letters A, 380, 215-221.
https://doi.org/10.3847/1538-4357/834/1/38
[24]  Ghosh, S., Bharuthram, R., Khan, M. and Gupta, M.R. (2004) Physics of Plasmas, 11, 3602.
https://doi.org/10.1063/1.1760584
[25]  Cairns, R.A., Bingham, R., Dendy, R.O., Nairn, C.M.C., Shukla, P.K. and Mamun, A.A. (1995) Journal de Physique IV, 5, C6-C43.
https://doi.org/10.1051/jp4:1995608
[26]  Goertz, C.K. (1989) Reviews of Geophysics, 27, 271.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133