On the Existence of Non-Intersecting Straight Lines on the Plane
DOI: 10.4236/jmp.2018.95052 , PP. 816-819
Keywords: Infinite Straight Line , Euclid’s Fifth Postulate , Non-Euclidean Geometries
Abstract:
In this brief note, we adduce the logical rationale that if at least one infinite straight line non-intersecting with the given straight line passes through a given point not lying on a given straight line, then it must be unique.
References
[1] Euclid (2002) Euclid’s Elements. Grin Lion Press, Lion.
[2] Dieudonné, J. (1970) The American Mathematical Monthly, 77, 134-135. https://doi.org/10.2307/2317325
[3] Bonola, R. (1955) Non-Euclidean Geometry. N. Y. Dover Publication, New York.
[4] Coxeter, H.S.M. (1965) Non-Euclidean Geometry. University of Toronto Press, Toronto.
[5] Milnor, J.W. (1982) Bulletin of the American Mathematical Society, 6, 9-24. https://doi.org/10.1090/S0273-0979-1982-14958-8
[6] Lobachevsky, N.I. (1840) Geometrische Untersuchungen zur Theorie der Parallellinien. F. Fincke, Berlin.
Full-Text