全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Perturbative Guiding Center and Stochastic Gyrocenter Transformations: Gyro-Phase Is the Kaluza-Klein 5th Dimension also for Reconciling General Relativity with Quantum Mechanics

DOI: 10.4236/jmp.2018.94048, PP. 701-752

Keywords: Guiding Center Transformation, Gyrocenter Transformation, Kaluza-Klein, General Relativity Higher Dimensions, Stochastic Quantum Mechanics, Schrödinger Equation, Lorentz’s Force Law

Full-Text   Cite this paper   Add to My Lib

Abstract:

The non perturbative guiding center transformation is extended to the relativistic regime and takes into account electromagnetic fluctuations. The main solutions are obtained in covariant form: the gyrating particle and the guiding particle solutions, both in gyro-kinetic as in MHD orderings. Moreover, the presence of a gravitational field is also considered. The way to introduce the gravitational field is original and based on the Einstein conjecture on the feasibility to extend the general relativity theory to include electromagnetism by geometry, if applied to the extended phase space. In gyro-kinetic theory, some interesting novelties appear in a natural way, such as the exactness of the conservation of a magnetic moment, or the fact that the gyro-phase is treated as the non observable fifth dimension of the Kaluza-Klein model. Electrodynamics becomes non local, without the inconsistency of self-energy. Finally, the gyrocenter transformation is considered in the presence of stochastic e.m. fluctuations for explaining quantum behaviors via Nelson’s approach. The gyrocenter law of motion is the Schrödinger equation.

References

[1]  Turchetti, G. and Sinigardi, S. and Londrillo, P. (2014) The European Physical Journal D, 68, 374.
[2]  Cary, J.R. and Brizard, A.J. (2009) Reviews of Modern Physics, 81, 693.
https://doi.org/10.1103/RevModPhys.81.693
[3]  Brizard, A.J. and Hahm, T.S. (2007) Reviews of Modern Physics, 79, 421.
https://doi.org/10.1103/RevModPhys.79.421
[4]  Kaluza, Th. (1921) Sitzungsberichte der Preussischen Akademie der Wissenschaftenzu Berlin Math. Phys, K1, 374.
[5]  Klein, O. (1926) Zeitschrift für Physik, 37, 895-906.
https://doi.org/10.1007/BF01397481
[6]  Di Troia, C. (2015) Physics of Plasmas, 22, Article ID: 042103.
https://doi.org/10.1063/1.4916568
[7]  Cary, J.R. and Littlejohn, R.G. (1983) Annals of Physics, 151, 1-34.
https://doi.org/10.1016/0003-4916(83)90313-5
[8]  Bailin, D. and Love, A. (1987) Reports on Progress in Physics, 50, 1087.
https://doi.org/10.1088/0034-4885/50/9/001
[9]  Overduin, J.M. and Wesson, P.S. (1997) Physics Reports, 283, 303-378.
https://doi.org/10.1016/S0370-1573(96)00046-4
[10]  Vandi, L. (2014) Il modello di Kaluza: unificazione tra gravità ed elettromagnetismo.
http://amslaurea.unibo.it/7843/
[11]  Ottino, J.M. (1989) The Kinematics of Mixing: Stretching, Chaos, and Transport. Ch. 2, Cambridge University Press, Cambridge.
[12]  Pegoraro, F. (2015) Physics of Plasmas, 22, Article ID: 112106.
https://doi.org/10.1063/1.4935282
[13]  Lust, R. and Schluter, A. (1954) Zeitschrift für Astrophysik, 34, 353.
[14]  Chandrasekhar, S. and Kendall, P.C. (1957) Astrophysical Journal, 126, 457.
https://doi.org/10.1086/146413
[15]  Beltrami, E. (1889) Rendiconti del Reale Studio Lombardo, Series II, 22, 122.
[16]  Mahajan, S.M. and Yoshida, Z. (1998) Physical Review Letters, 81, 4863.
https://doi.org/10.1103/PhysRevLett.81.4863
[17]  Di Troia, C. (2015) Nuclear Fusion, 55, Article ID: 123018.
https://doi.org/10.1088/0029-5515/55/12/123018
[18]  Varma, R.K. (2003) Physics Reports, 378, 301-434.
https://doi.org/10.1016/S0370-1573(03)00005-X
[19]  Schrödinger, E. (1930) Sitzungsberichte der Preussischen Akademie der Wissenschaftenzu Berlin Math. Phys, 24, 418.
[20]  Huang, K. (1949) American Journal of Physics, 47, 797.
[21]  Barut, A.O. and Bracken, A.J. (1981) Physical Review D, 23, 2454.
https://doi.org/10.1103/PhysRevD.23.2454
[22]  Hestenes, D. (1990) Foundations of Physics, 20, 1213-1232.
https://doi.org/10.1007/BF01889466
[23]  Scott, B.D. (2017) Gyrokinetic Field Theory as a Gauge Transform or: Gyrokinetic Theory without Lie Transforms.
https://arxiv.org/abs/1708.06265
[24]  Goldstein, H., Poole, C. and Safko, J. (2014) Classical Mechanics. 3rd Edition, Pearson Education Limited, Essex, 347.
[25]  Littlejohn, R.G. (1983) Journal of Plasma Physics, 81, 693.
[26]  Lorentz, H.A. (1909) The Theory of Electrons. Dover, New York.
[27]  Dirac, P.A.M. (1938) Proceedings of the Royal Society of London, A 167, 148.
https://doi.org/10.1098/rspa.1938.0124
[28]  de Sabbata, V., Schmutzer, E. and Bleyer, U. (1985) Astronomische Nachrichten, 306, 202.
[29]  Goenner, F.M.H. (2004) Living Reviews in Relativity, 7, 2.
https://doi.org/10.12942/lrr-2004-2
[30]  Straub, W.O. (2014) Kaluza-Klein for Kids.
http://vixra.org/abs/1406.0172
[31]  Di Troia, C. (2012) Plasma Physics and Controlled Fusion, 54, Article ID: 105017.
https://doi.org/10.1088/0741-3335/54/10/105017
[32]  Bohm, D. and Hiley, B.J. (1995) The Undivided Universe. Routledge, London.
[33]  Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path Integral. McGraw-Hill Colleges, New York.
[34]  Nagasawa, M. (2000) Stochastic Processes in Quantum Physics. Springer, Basel.
https://doi.org/10.1007/978-3-0348-8383-2
[35]  de la Peña, L. and Cetto, A.M. (2015) The Emerging Quantum. Springer International Publishing, Switzerland.
https://doi.org/10.1007/978-3-319-07893-9
[36]  Derakhshani, M. (2015) A Suggested Answer to Wallstrom’s Criticism: Zitterbewegung Stochastic Mechanics I.
https://arxiv.org/abs/1510.06391
[37]  Chen, L. and Zonca, F. (2016) Reviews of Modern Physics, 88, Article ID: 015008.
https://doi.org/10.1103/RevModPhys.88.015008
[38]  Nelson, E. (1966) Physical Review, 150, 1079.
https://doi.org/10.1103/PhysRev.150.1079
[39]  Boyer, T. (1968) Physical Review, 174, 1631.
https://doi.org/10.1103/PhysRev.174.1631
[40]  Bohm, D. (1962) Physical Review, 85, 166.
https://doi.org/10.1103/PhysRev.85.166
[41]  Wallstrom, T.C. (1989) Foundations of Physics Letters, 2, 113-126.
https://doi.org/10.1007/BF00696108

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133