We investigate the influence of a gravitational wave background on particles in circular motion. We are especially interested in waves leading to stationary orbits. This consideration is limited to circular orbits perpendicular to the incidence direction. As a main result of our calculation, we obtain in addition to the well-known alteration of the radial distance a time dependent correction term for the phase modifying the circular motion of the particle. A background of gravitational waves creates some kind of uncertainty.
References
[1]
Einstein, A. (2005) Annalen der Physik, 49, 769-822. https://doi.org/10.1002/andp.19163540702
Kramer, M. (1998) Astrophysical Journal, 509, 856. https://doi.org/10.1086/306535
[11]
Kramer, M., et al. (2006) Science, 314, 97-102. https://doi.org/10.1126/science.1132305
[12]
Burgay, M., et al. (2003) Nature, 426, 531-533. https://doi.org/10.1038/nature02124
[13]
Hannam, M., Husa, S., Sperhake, U., Bruegmann, B. and Gonzalez, J.A. (2008) Physical Review D, 77, Article ID: 044020. https://doi.org/10.1103/PhysRevD.77.044020
Baker, J.G., Centrella, J., Choi, D., Koppitz, M. and van Meter, J. (2006) Physical Review Letters, 96, Article ID: 111102. https://doi.org/10.1103/PhysRevLett.96.111102
[16]
Bruegmann, B., Tichy, W. and Jansen, N. (2004) Physical Review Letters, 92, Article ID: 211101. https://doi.org/10.1103/PhysRevLett.92.211101
[17]
Campanelli, M., Lousto, C.O., Marronetti, P. and Zlochower, Y. (2006) Physical Review Letters, 96, Article ID: 111101. https://doi.org/10.1103/PhysRevLett.96.111101
[18]
Connaughton, V., et al. (2016) The Astrophysical Journal, 826, L6. https://doi.org/10.3847/2041-8205/826/1/L6
[19]
Belczynski, K., Holz, D.E., Bulik, T. and O’Shaughnessy, R. (2016) Nature, 534, 512-515. https://doi.org/10.1038/nature18322
[20]
Altamirano, D., et al. (2011) The Astrophysical Journal, 742, L17. https://doi.org/10.1088/2041-8205/742/2/L17
[21]
James, O., von Tunzelmann, E., Franklin, P. and Thorne, K.S. (2015) Classical and Quantum Gravity, 32, Article ID: 065001. https://doi.org/10.1088/0264-9381/32/6/065001
[22]
Khriplovich, I.B. and Pomeransky, A.A. (1998) Journal of Experimental and Theoretical Physics, 86, 839-849. https://doi.org/10.1134/1.558554
[23]
Deriglazov, A.A. and Guzmn Ramrez, W. (2015) Physical Review D, 92, Article ID: 124017. https://doi.org/10.1103/PhysRevD.92.124017
[24]
Deriglazov, A.A. and Guzmn Ramrez, W. (2016) Advances in High Energy Physics, 2016, Article ID: 1376016.
[25]
Deriglazov, A.A. and Guzmn Ramrez, W. (2017) Advances in Mathematical Physics, 2017, Article ID: 7397159.
[26]
Zhang, P.M., Duval, C. and Horvathy, P.A. (2017) Memory Effect for Impulsive Gravitational Waves.
Carroll, S.M. (2004) Spacetime and Geometry: An Introduction to General Relativity. Addison Wesley, Boston.
[30]
Cheng, T.-P. (2005) Relativity, Gravitation and Cosmology. A Basic Introduction. Oxford University Press, Oxford.
[31]
Schroder, U.E. (2007) Gravitation: Einfuhrung in die allgemeine Relativitatstheorie. Deutsch.
[32]
Sharan, P. (2009) Space-Time, Geometry and Gravitation. Progress in Mathematical Physics, Springer Verlag, New York. https://doi.org/10.1007/978-3-7643-9971-9
[33]
Braccini, S. and Fidecaro, F. (2016) The Detection of Gravitational Waves. Springer International Publishing, Cham, 237. https://doi.org/10.1007/978-3-319-20224-2_7
[34]
Rebhan, E. (2011) Theoretische Physik: Relativitatstheorie und Kosmologie. Theoretische Physik/Eckhard Rebhan. Spektrum Akademischer Verlag.
[35]
Will, C.M. (2016) Gravity: Newtonian, Post-Newtonian, and General Relativistic. Springer International Publishing, Cham, 9-72.
[36]
Pereira, J.G. (2013) Gravitational Waves: A Foundational Review.
[37]
Couder, Y. and Fort, E. (2006) Physical Review Letters, 97, Article ID: 154101. https://doi.org/10.1103/PhysRevLett.97.154101