全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Superconducting in Equal Molar NbTaTiZr-Based High-Entropy Alloys

DOI: 10.4236/ns.2018.103012, PP. 110-124

Keywords: HEAs, Superconducting, Matthias’ Rule, e/a, NbTaTiZr-Based Alloys, Fe, Ge, Hf, Si, V Addition, Coherence Length, Electrical Carrier Density

Full-Text   Cite this paper   Add to My Lib

Abstract:

Superconducting (SC) in equal molar NbTaTiZr-based high-entropy alloys (HEAs) that were added with Fe, Ge, Hf, Si, and/or V was observed. According to investigation on crystal structure, composition, and the relationship between critical temperature and e/a ratio, as indicated in Matthias’ empirical rule, the main superconducting phase was that enriched with Nb and Ta. The coherence length (ξ) that was calculated from the carrier density reveals that ξvalue has the same order of magnitude of several hundreds of Angstroms as those binary Nb-Ti and Nb-Zr alloys showed.

References

[1]  Onnes, H.K. (1913) Supplements to the Communications of the Physical Laboratory of Leiden University. 34b, 55.
[2]  Meissner, W. and Ochsenfeld, R. (1933) Ein neuer Effekt bei Eintritt der Supraleitfahigkeit. Naturwissenschaften, 21, 787-788.
https://doi.org/10.1007/BF01504252
[3]  Dew-Hughes, D. (2001) The Critical Current of Superconductors: An Historical Review. Low Temperature Physics, 27, 713-722.
https://doi.org/10.1063/1.1401180
[4]  Narasimhan, S.L., Taggart, R. and Polonis, D.H. (1972) The Superconducting Transition Behavior of ZrNb Binary Alloys. Journal of Nuclear Materials, 43, 258-268.
https://doi.org/10.1016/0022-3115(72)90057-8
[5]  Cotton, W.L., Taggart, R. and Polonis, D.H. (1974) The Superconducting Transition Behavior of Ternary Alloys of Titanium. Scripta Metallurgica, 8, 329-336.
https://doi.org/10.1016/0036-9748(74)90133-1
[6]  Matthias, B.T. (1957) Chap. 5 Superconductivity in the Periodic System. Progress in Low Temperature Physics, 2, 138-150.
https://doi.org/10.1016/S0079-6417(08)60104-3
[7]  Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Tsau, T.S. and Chang, S.Y. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering. Materials, 6, 299-303.
https://doi.org/10.1002/adem.200300567
[8]  Chen, S.K. (2012) Chap. 6 Electrochemical Passive Properties of AlxCoCrFeNi (x = 0, 0.25, 0.50, 1.00) High-Entropy Alloys in Sulfuric Acids. In: Shih, H., Ed., Corrosion Resistance, InTech, Croatia, 133-156.
https://doi.org/10.5772/33892
[9]  Tong, C.J., Chen, Y.L., Yeh, J.W., Lin, S.J., Chen, S.K., Shun, T.T., Tsau, C.H. and Chang, S.Y. (2005) Microstructure Characterization of Alx CoCrCuFeNi High-Entropy Alloy System with Multiprincipal Elements. Metallurgical and Materials Transactions A, 36, 881-893.
https://doi.org/10.1007/s11661-005-0283-0
[10]  Chen, S.K. and Kao, Y.F. (2012) Near-Constant Resistivity in 4.2-360 K in a B2 Al2.08CoCrFeNi. AIP Advances, 2, 012111-012115.
https://doi.org/10.1063/1.3679072
[11]  Kao, Y.F., Chen, S.K., Sheu, J.H., Lin, J.T., Lin, W.E., Yeh, J.W., Lin, S.J., Liou, T.H. and Wang, C.W. (2010) Hydrogen Storage Properties of Multi-Principal-Component CoFeMnTixVyZrz Alloys. International Journal of Hydrogen Energy, 35, 9046-9059.
[12]  Johnson, W.L. (1981) Superconducting Materials. In: Cahn, R.W. and Haasen, P., Eds., Physical Metallurgy, 2nd Edition, Elsevier, Amsterdam, Chap. 27, 1735-1778.
[13]  Bardeen, J., Cooper, L. and Schrieffer, J.R. (1957) Theory of Superconductivity. Physical Review Letters, 108, 1175.
[14]  McMillan, W.L. (1968) Transition Temperature of Strong-Coupled Superconductors. Physical Review B, 167, 331.
[15]  Das Gupta, A., Mordike, B.L. and Schultz, L. (1975) Superconductivity in a Dilute Copper—Niobium Alloy. Materials Science and Engineering, 18, 137-142.
[16]  Kittel, C. (2005) Introduction to Solid State Physics. 8th Edition, Wiley, Hoboken.
[17]  Khan, H.R. (2003) Superconductivity. In: Meyers, R.A., Ed., Encyclopedia of Physical Science and Technology, Elsevier, Amsterdam, 235-250.
[18]  Tsao, T.K. (2012) Nb-Containing Superconducting High-Entropy Alloys. M.S. Thesis, National Tsing Hua University, Hsinchu. (In Chinese)
[19]  Tiwari, G.P. and Ramanujan, R.V. (2001) Review the Relation between the Electron to Atom Ratio and Some Properties of Metallic Systems. Journal of Materials Science, 36, 271-283.
[20]  Mota, A.C. and Hoyt, R.F. (1976) Dependence of the Superconducting Transition Temperature on Electron per Atom Ratio and Lattice Deformation in Noble Metal Alloys. Solid State Communications, 20, 1025-1028.
[21]  Ramakrishnan, S. and Chandra, G. (1985) Study of Superconductivity in Ternary Nb50Ti30M20 (M = Mo, Pt, Pd, V and Ru) Solid Solutions. Solid State Communications, 56, 965-966.
[22]  Bennett, L.H., Watson, R.E. and Carter, G.C. (1970) Relevance of Knight Shift Measurements Electronic Density of States. Journal of Research of the National Bureau of Standards A: Physics and Chemistry, 74, 569-610.
[23]  Cyrot, M. and Pavuna, D. (1992) Introduction to Superconductivity and High-Tc Materials. World Scientific, London.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133