Google’s AlphaGo represents the impressive performance of deep learning and the backbone of deep learning is the workhorse of highly versatile neural networks. Each network is made up of layers of interconnected neurons and the nonlinear activation function inside each neuron is one of the key factors that account for the unprecedented achievement of deep learning. Learning how to create quantum neural networks has been a long time pursuit since 1990’s from many researchers, unfortunately without much success. The main challenge is to know how to design a nonlinear activation function inside the quantum neuron, because the laws in quantum mechanics require the operations on quantum neurons be unitary and linear. A recent discovery uses a special quantum circuit technique called repeat-until-success to make a nonlinear activation function inside a quantum neuron, which is the hard part of creating this neuron. However, the activation function used in that work is based on the periodic tangent function. Because of this periodicity, the input to this function has to be restricted to the range of [0, π/2), which is a serious constraint for its applications in real world problems. The function’s periodicity also makes its neurons not suited for being trained with gradient descent as its derivatives oscillate. The purpose of our study is to propose a new nonlinear activation function that is not periodic so it can take any real numbers and its neurons can be trained with efficient gradient descent. Our quantum neuron offers the full benefit as a quantum entity to support superposition, entanglement, interference, while also enjoys the full benefit as a classical entity to take any real numbers as its input and can be trained with gradient descent. The performance of the quantum neurons with our new activation function is analyzed on IBM’s 5Q quantum computer and IBM’s quantum simulator.
References
[1]
Hu, W. (2018) Empirical Analysis of a Quantum Classifier Implemented on IBM’s 5Q Quantum Computer. Journal of Quantum Information Science, 8, 1-11.
[2]
Hu, W. (2018) Empirical Analysis of Decision Making of an AI Agent on IBM’s 5Q Quantum Computer. Natural Science, 10, 45-58. https://doi.org/10.4236/ns.2018.101004
[3]
3. Sriarunothai, T., W¨olk, S., Giri, G.S., Friis, N., Dunjko, V., Briegel, H.J. and Wunderlich, C. (2019) Speeding-Up the Decision Making of a Learning Agent Using an Ion Trap Quantum Processor. Quantum Science and Technology, 4, Article No. 015014.
https://doi.org/10.1088/2058-9565/aaef5e
[4]
Andrecut, M. and Ali, M. (2002) A Quantum Neural Network Model. International Journal of Modern Physics C, 13, 75. https://doi.org/10.1142/S0129183102002948
[5]
Altaisky, M. (2001) Quantum Neural Network. arXiv preprint quant-ph/0107012
[6]
Gupta, S. and Zia, R. (2001) Quantum Neural Networks. Journal of Computer and System Sciences, 63, 355-383.
https://doi.org/10.1006/jcss.2001.1769
[7]
Zhou, R., Wang, H., Wu, Q. and Shi, Y. (2012) Quantum Associative Neural Network with Nonlinear Search Algorithm. International Journal of Theoretical Physics, 51, 705-723. https://doi.org/10.1007/s10773-011-0950-4
[8]
Schuld, M., Sinayskiy, I. and Petruccione, F. (2014) The Quest for a Quantum Neural Network. Quantum Information Processing, 13, 2567-2586. https://doi.org/10.1007/s11128-014-0809-8
[9]
Cao, Y., Guerreschi, G.G. and Aspuru-Guzik, A. (2017) Quantum Neuron: An Elementary Building Block for Machine Learning on Quantum Computers. arXiv:1711.11240
[10]
Torrontegui, E. and Garc′ia-Ripoll, J.J. (2018) Universal Quantum Perceptron as Efficient Unitary Approximators. arXiv:1801.00934
[11]
McCulloch, W.S. and Pitts, W. (1943) A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biology, 5, 115-133. https://doi.org/10.1007/BF02478259
Kitaev, A.Y., Shen, A.H. and Vyalyi, M.N. (2002) Classical and Quantum Computation. Graduate Studies in Mathematics, 47. https://doi.org/10.1090/gsm/047
[14]
Paetznick, A. and Svore, K.M. (2014) Repeat-until-Success: Non-Deterministic Decomposition of Single-Qubit Unitaries. Quantum Information & Computation Archive, 14, 1277-1301.
[15]
Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R. and Kim, M.S. (2017) Quantum Generalisation of Feedforward Neural Networks. Quantum Information, 3, 36. https://doi.org/10.1038/s41534-017-0032-4