全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Modelling Large Scale Invasion of Aedes aegypti and Aedes albopictus Mosquitoes

DOI: 10.4236/apm.2018.83013, PP. 245-265

Keywords: Reaction-Diffusion Equations, Allee Effect, Range Expansion, Travelling Waves, Temperature Dependence

Full-Text   Cite this paper   Add to My Lib

Abstract:

The principle aim of this work is to simulate the invasion of two invasive mosquito species Aedes aegypti and Aedes albopictus in central Europe at a landscape scale. The spatial-temporal dynamics of invasion is investigated in dependence of predation pressure, seasonal variation of ambient temperature as well as human population density. The introduction of temperature dependent entomological parameters enables the simulation of seasonal pattern of population dynamics. The influence of temperature, predation pressure and human population density on invasion is studied in one-dimensional cases. In two dimensions, georeferenced parameters such as annual mean temperature and human population density are prepared by a geographical information system and introduced into the finite element tool COMSOL Multiphysics. The results show that under the current temperature, central Europe cannot become a permanent breeding region for Aedes aegypti. However, southwest Germany especially the regions along the Upper Rhine Valley may provide suitable habitats for the permanent establishment of Aedes albopictus. An annual temperature rise of two degrees would lead to dramatic increase of invasion speed and extension range of Aedes albopictus.

References

[1]  WHO, Dengue and Sever Dengue. Fact Sheet No 117.
http://www.who.int/mediacentre/factsheets/fs117/en/index.html
[2]  Reiter, P. (2010) Yellow Fever and Dengue: A Threat to Europe? Eurosurveillance, 15, 19509.
[3]  Invasive Species Specialist Group, Global Invasive Species Database—Aedes albopictus (Insect).
http://www.issg.org/database/species/ecology.asp?si=109&fr=1&sts=sss&lang=EN
[4]  Vezzani, D. and Carbajo, A.E. (2008) Aedes aegypti, Aedes albopictus and Dengue in Argentina: Current Knowledge and Future Directions. Memórias do Instituto Oswaldo Cruz, 103, 66-74.
https://doi.org/10.1590/S0074-02762008005000003
[5]  Scholte, E., Den Hartog, W., Dik, M., Schoelitsz, B., Brooks, M., Schaffner, F., Foussadier, R., Braks, M. and Beeuwkes, J. (2010) Introduction and Control of Three Invasive Mosquito Species in the Netherlands, July-October 2010. Eurosurveillance, 15, 19710.
[6]  Werner, D., Kronefeld, M., Schaffner, F. and Kampen, H. (2012) Two Invasive Mosquito Species, Aedes albopictus and Aedes japonicus japonicus, Trappd in South-West Germany, July to August 2011. Eurosurveillance, 17, 20067.
https://doi.org/10.2807/ese.17.04.20067-en
[7]  Patz, J.A., Martens, W.J.M., Focks, D.A. and Jetten T.H. (1998) Dengue Fever Epidemic Potential as Projected by General Circulation Models of Global Climate Change. Environmental Health Perspectives, 106, 147-153.
https://doi.org/10.1289/ehp.98106147
[8]  Kearney, M. Porter, W.P., Williams, C., Ritchie, S. and Hoffmann, A.A. (2009) Integrating Biophysical Models and Evolutionary Theory to Predict Climatic Impacts on Species’ Ranges: The Dengue Mosquito Aedes aegypti in Australia. Functional Ecology, 23, 528-538.
https://doi.org/10.1111/j.1365-2435.2008.01538.x
[9]  Fisher, D., Thomas, S.M., Niemitz, F., Reineking, B. and Beierkuhnlein, C. (2011) Projection of Climate Suitability for Aedes albopictus Skuse (Culicidae) in Europe under Climate Change Conditions. Global and Planetary Change, 78, 54-65.
https://doi.org/10.1016/j.gloplacha.2011.05.008
[10]  Caminade, C., Medlock, J. M., Ducheyne, E., Mclntyre, K.M., Leach, S., Baylis, M. and Morse, A.P. (2012) Suitability of European Climate for the Asian Tiger Mosquito Aedes albopictus: Recent Trends and Future Scenarios. Journal of the Royal Society Interface, 9, 2708-2717.
https://doi.org/10.1098/rsif.2012.0138
[11]  Takahashi, L.T., Maidana, N.A., Ferreira Jr., W.C., Pulino, P. and Yang, H.M. (2005) Mathematical Models for the Aedes aegypti Dispersal Dynamics: Travelling Waves by Wing and Wind. Bulletin of Mathematical Biology, 67, 509-528.
https://doi.org/10.1016/j.bulm.2004.08.005
[12]  Yang, H.M., Marcoris, M.L.G., Galvani, K.C., Andrighetti, M.T.M. and Wanderely, D.M.V. (2009) Assessing the Effects of Temperature on the Population of Aedes aegypti, the Vector of Dengue. Epidemiological Infection, 137, 1188-1202.
https://doi.org/10.1017/S0950268809002040
[13]  Richter, O. and He, W. (2012) Modelling Large Scale Invasion of New Species under Temperature Change by Reaction-Diffusion Equations. International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany, 1-5 July 2012, 2187-2193.
[14]  Otero, M., Schweigmann, N. and Solari, H.G. (2008) A Stochastic Spatial Dynamical Model for Aedes aegypti. Bulletin of Mathematical Biology, 70, 1297-1325.
https://doi.org/10.1007/s11538-008-9300-y
[15]  Delatte, H., Gimonneau, G., Triboire, A. and Fontenille, D. (2009) Influence of Temperature on Immature Development, Survival, Longevity, Fecundity, and Gonotrophic Cycles of Aedes albopictus, Vector of Chikungunya and Dengue in the Indian Ocean. Journal of Medical Entomology, 46, 33-41.
https://doi.org/10.1603/033.046.0105
[16]  Maidana, A. and Yang, H.M. (2008) Describing the Geographic Spread of Dengue Disease by Traveling Waves. Mathematical Biosciences, 215, 64-77.
https://doi.org/10.1016/j.mbs.2008.05.008
[17]  Anguelov, R., Dumont, Y. and Lubama, J. (2011) Mathematical Modeling of Sterile Insect Technology for Control of Anopheles Mosquito. AIP Conference Proceedings, 1404, 155-161.
https://doi.org/10.1063/1.3659915
[18]  Dumont, Y., Chiroleu, F. and Domerg, C. (2008) On a Temporal Model for the Chikungungya Disease: Modeling Theory and Numeric. Mathematical Biosciences, 213, 80-91.
https://doi.org/10.1016/j.mbs.2008.02.008
[19]  Richter, O., Moenickes, S. and Suhling, F. (2011) Modelling the Effect of Temperature on the Range Expansion of Species by Reaction-Diffusion Equations. Mathematical Biosciences, 235, 171-181.
https://doi.org/10.1016/j.mbs.2011.12.001
[20]  Toma, L., Severini, F., Luca, M.D., Bella, A. and Romi, R. (2003) Seasonal Patterns of Oviposition and Egg Hatching Rate of Aedes albopictus in Rome. Journal of the American Mosquito Control Association, 19, 19-22.
[21]  UCEA (2000) Osservazioni metereologiche dell’anno 2000. In: Mangianti, I.L. and Perini, L., Eds., Osservatorio meteorologico Torre Calandrelli, Collegio Romano, UCEA, Rome, Italy, 20 p.
[22]  IPCC (2007) Climate Change 2007: The Physical Science Basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK/New York, USA, 996 p.
[23]  Hawley, W.A., Reiter, P., Copeland, R.S., Pumpuni, C.B. and Craig Jr., G.B. (1987) Aedes albopictus in North America: Probable Introduction in Used Tires from Northern Asia. Science, 236, 1114-1116.
https://doi.org/10.1126/science.3576225
[24]  Brown, J.E., Scholte, E.J., Dik, M., Den Hartog, W., Beeuwkes, J. and Powell, J.R. (2011) Aedes aegypti Mosquitoes Imported into the Netherlands, 2010. Emerging Infectious Diseases, 17, 2335-2337.
https://doi.org/10.3201/eid1712.110992
[25]  Medlock, J.M., Hansford, K.M., Schaffner, F., Versteirt, V., Hendrickx, G., Zeller, H. and Bortel, W.V. (2012) A Review of the Invasive Mosquitoes in Europe: Ecology, Public Health Risks, and Control Options. Vector-Borne and Zoonotic Diseases, 12, 435-447.
https://doi.org/10.1089/vbz.2011.0814
[26]  Rozeboom, L.E. (1940) The overwintering of Aedes aegypti L in Stillwater, Oklahoma. Proceedings of the Oklahoma Academy of Science, 19, 81-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133