The Theory of Morphic Fields explains how
co-evolution through collective information fields acquires its own
organization pattern, nurtured by habits or thoughts that “in-form” the memory
of species. The influences of electromagnetic fields (EMFs) on bio-energy
transport and its mechanism of changes has been investigated through analytic
and numerical simulation as well as experimentation. As an answer to that need
Therapeutic Acupunctural Resonance is born. This innovative therapeutic is
rooted in concepts from classic Physics as well as Field Quantic Theory—highlighting
the practical application of the criterion defined by the Soliton theory and
the current, extraordinary discoveries at Cellular Quantic Kinetics level. The
development of Therapeutic Acupuntural Resonance has taken into account to a
certain extent these concepts: both the compatibility between the Five Element
Theory and the principles of Euclidean Geometry, as well as the new forms of
interpretation of Quantum mechanisms involved in Cellular Kinetics and its relationship
with Chinese Ancient wisdom.
References
[1]
Giacobone, M. (2009) Morphic Resonance: A New Approach from Biology. (In Spanish)
http://budacuantico.blogspot.com.ar/2009/12/la-resonancia-morfica-un-nuevo-enfoque.html
[2]
Inchauspe, A.á. (2015) Therapeutic Acupunctural Resonance: The Original Research. Chinese Medicine, 6, 214-233. https://doi.org/10.4236/cm.2015.64024
[3]
Inchauspe, A.A. (2016) Therapeutic Acupunctural Resonance II: New Discoveries That Justify the Outcomes of This New Therapeutic Modality. Journal of Biosciences and Medicines, 4, 39-45. https://doi.org/10.4236/jbm.2016.46006
[4]
Morphogenetic Field (Developmental Biology). (In Spanish)
https://es.wikipedia.org/wiki/Campo_morfogen%C3%A9tico_(biolog%C3%ADa_del_desarrollo)
[5]
Morozova, N. and Shubin, M. (2012) The Geometry of Morphogenesis and the Morphogenetic Field Concept.
[6]
Pang, X.F., Chen, S., Wang, X. and Zhong, L. (2016) Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence. International Journal of Molecular Sciences, 17, 3.
https://doi.org/10.3390/ijms17081130
[7]
Adamski, A.G. (2011) Bioplasma Concept of Consciousness. NeuroQuantology, 4, 681-691.
[8]
Barut, P. (1977) Nonlinear Equations in Physics and Mathematics. Proceedings of the NATO Advanced Study Institute, Istanbul, 1-13 August 1977, 143-181.
[9]
Inchauspe, A. (2014) Is Traditional Chinese Medicine Definitely an Exact Science? Comparison between the Oriental Five Elements’ Theory and Euclid Five Regular Polyhedrons postulates. 2nd International Conference and Exhibition on Traditional & Alternative Medicines, Beijing, 25-26 August 2014, 255-277.
https://doi.org/10.4172/2327-5162.S1.006
[10]
Folegotto, I. and Tambornino, R. (2001) Instrumental Mediators. 16th International Symposium of Informatics in Education. (In Spanish)
Russell, J.S. (1844) Report on Waves. 14th Meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), Plates XLVII-LVII, 90-311.
[13]
Briggs, J. and Peat, F.D. (1994) Espejo y Reflejo: Del caos al orden. Editorial Gedisa, Segunda Edición, Barcelona, Chapter 4, 119.
Briggs, J. and Peat, F.D. (1994) Espejo y Reflejo: Del caos al orden. Editorial Gedisa, Segunda Edición, Barcelona, Chapter 4, 120.
[16]
Akhmediev, N. and Ankiewicz, A. (2008) Dissipative Solitons: From Optics to Biology and Medicine. Lecture Notes in Physics 751, Springer, Berlin Heidelberg.
[17]
Naumkin, P. (2008) What Is a Soliton? UNAM Bulletin No. 19, Mathematical Institute, Morelia-Campus, National Autonomous University of Mexico, Mexico City, 1-4.
[18]
Christiansen, L. and Scott, A.C. (1990) Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Proteins. Nato Science Series B Vol. 243, Springer Science + Business Media, New York, 31.
[19]
Ivanisevic, V.G. and Ivancevic, T.T. (2013) Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures. Journal of Geometry and Symmetry in Physics, 31, 5.
https://doi.org/10.7546/jgsp-31-2013-1-56
[20]
Scientific Analysis of the Solitonic Wave. Source: Energy Storage: Compression and Switching, Book 84, 80, Code BOS 42.
Maris, H.J. and Tamura, S. (2011) Propagation of Acoustic Phonon Solitons in Nonmetallic Crystals. Physical Review B, 84, Article ID: 024301.
[27]
Creation of Solitons during Acupuncture. (In Spanish)
https://es.slideshare.net/BarbaraFuentes3/tratado-de-acupuntura-iii- terapia-acupuntural-y-localizacion-y-combinacion-de-puntos-jose-luis-padilla-libro-completo
[28]
Briggs, J. and Peat, F.D. (1994) Espejo y Reflejo: Del caos al orden. Editorial Gedisa, Segunda Edición, Barcelona, Chapter 4, 120.
[29]
Briggs, J. and Peat, F.D. (1994) Espejo y Reflejo: Del caos al orden. Editorial Gedisa, Segunda Edición, Barcelona, Chapter 4, 123.
[30]
Lugiato, L.A. CNISM and INFM-CNR, Dipartimento di Fisica e Matematica, Universit’adell’Insubria, ViaValleggio, 11, 22100 Como, Italy.
Nagasawa, T. and Nishida, Y. (1981) Experiments on the Ion-Acoustic Cylindrical Solitons. Plasma Physics, 23, 575-595.
[33]
Briggs, J. and Peat, F.D. (1994) Espejo y Reflejo: Del caos al orden. Editorial Gedisa, Segunda Edición, Barcelona, Chapter 4, 122.
[34]
Brizhik, L. (2014) Biological Effects of Pulsating Magnetic Fields: Role of Solitons.
[35]
Klotz, H.P. (1957) El Aporte de Pávlov al desarrollo de la Medicina. Psique, Buenos Aires, 25. (In Spanish)
[36]
Pang, X.F., Chen, S., Wang, X. and Zhong, L. (2016) Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence. International Journal of Molecular Sciences, 17, 17.
https://doi.org/10.3390/ijms17081130
[37]
Pang, X.F. (1999) Influence of the Soliton in Anharmonic Molecular Crystals with Temperature on Mossbauer Effect. The European Physical Journal B—Condensed Matter and Complex Systems, 10, 415-428. https://doi.org/10.1007/s100510050871
[38]
Carieri, G., Buontempo, V., Galluzi, F., Scott, A.C., Gratton, E. and Shyemusunder, G. (1984) Spectroscopic Evidence for Davydov-Like Solitons in Acetanilide. Physical Review B, 30, 4689-4698.
[39]
Pang, X. (2000) Vibrational Energy-Spectra of Protein Molecules and Non-Thermally Biological Effect of Infra-Red Light. Institute of High-Energy Electronics, University Electronic Science and Technology of China, Chinese Academy of Sciences.
[40]
Hasegawa, A. and Tappert, F. (1973) Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. I. Anomalous Dispersion. Applied Physics Letters, 23, 142-144. https://doi.org/10.1063/1.1654836
[41]
Cytoskeletal Processing of Signals Involving Microtubular Structure.
http://dev.biologists.org/content/137/9/1407
[42]
Microtubular Structure Assembling Information.
[43]
Adamski, A.G. (2016) The Importance of Movement, Solitons and Coherent Light in the Development of Mental Processes. Journal of Advanced Neuroscience Research, 3, 25.
[44]
Hameroff, S., Scott, H. and Tuszynski, J. (2002) Quantum Computation in Brain Microtubules? Decoherence and Biological Feasibility. Physical Reviews E, 65, Article ID: 061901.
[45]
Hameroff, St., Rasmussen, S., Karampurwala, H., Vaidyanath, R. and Jensen, K. (1990) Computational Connectionism within Neurons: A Model of Cytoskeletal Automata Subserving Neural Networks. Physica D, 42, 428-449.
[46]
Gómez Yepes, A. Why Low Frequency Electromagnetic Stimulation Produced by Inductive Magnetic Stimulator (EIMA in Spanish) Works Well in the Treatment of Various Diseases Including Autoimmune Ones? Coatepec, México, 2-7.
http://www.terapiasmetabolicas.com/eima/
[47]
Mulvany, M.J. (2000) Small Artery Remodeling in Hypertension. Current Hypertension Reports, 4, 49-55.
[48]
Cardenas, M.L. (1991) Are the Transistors Enzyme-Complexes Found in Vitro also Transistors in Vivo? If So, Are They Physiologically Important. Journal of Theoretical Biology, 52, 111-113.
[49]
Bartlett, P.N. and Prat, F.E. (1993) Modelling of Processes in Enzyme Electrodes. Biosensors Bioelectronics, 8-9, 451-462.
[50]
Liberman, E.A. (1996) Cell Molecular Computers and Biological Information as the Foundation of Nature’s Laws. Biosystems, 38, 173-177.
Pang, X.F., Chen, S., Wang, X. and Zhong, L. (2016) Influences of Electromagnetic Energy on Bio-Energy Transport through Protein Molecules in Living Systems and Its Experimental Evidence. International Journal of Molecular Sciences, 17, 20.
https://doi.org/10.3390/ijms17081130
[57]
Pang, X.F. (2001) Vibrational Energy-Spectra of Protein Molecules and Non-Thermally Biological Effect of Infrared Light. 25th International Conference on Infrared and Millimeter Waves, Beijing, 12-15 September 2000, 298.
[58]
Christiansen, L. and Scott, A.C. (1990) Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Proteins. Nato Science Series B, Vol. 243, Springer Science + Business Media, New York, 121. https://doi.org/10.1007/978-1-4757-9948-4
[59]
Christiansen, L. and Scott, A.C. (1985) (1990) Davydov’s Soliton Revisited: Self-Trapping of Vibrational Energy in Proteins. Nato Science Series B, Vol. 243, Springer Science + Business Media, New York, 143.
https://doi.org/10.1007/978-1-4757-9948-4
[60]
Davydov, A.S. (1985) Solitons in Molecular Systems. D. Reidel Publishing, Dordrecht.
[61]
Pang, X.F. (2001) Vibrational Energy-Spectra of Protein Molecules and Non-Thermally Biological Effect of Infrared Light. 25th International Conference on Infrared and Millimeter Waves, Beijing, 12-15 September 2000, 299.
[62]
Plasmoids: Source: Energy Storage: Compression and Switching. Book 84, 80, Code BOS 42.
[63]
Hashimoto’s Theory: Source: Energy Storage: Compression and Switching. Book 84, 79-80, Code BOS 42.
[64]
Adamski, A.G. (2016) The Importance of Movement, Solitons and Coherent Light in the Development of Mental Processes. Journal of Advanced Neuroscience Research, 3, 27. https://doi.org/10.15379/2409-3564.2016.03.01.04
Briggs, J. and Peat, F.D. (1994) Espejo y Reflejo: Del caos al orden. Editorial Gedisa, Segunda Edición, Barcelona, Chapter 4, 126.
[67]
Briggs, J. and Peat, F.D. (1994) Espejo y Reflejo: Del caos al orden. Editorial Gedisa, Segunda Edición, Barcelona, Chapter 4, 128.
[68]
Cruz, Y. and Fayad, R. (2011) Transporte de solitones en los MT: Un modelo clásico. Revista de la Facultad de Medicina, 19, No. 1.
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-52562011000100009
[69]
Cruz, Y. (2011) Microtúbulos y terapia neural: Propuesta de una investigación promisoria. 12. http://www.bdigital.unal.edu.co/4277/1/598635.2011.pdf
[70]
Pang, X.F. (2001) Vibrational Energy-Spectra of Protein Molecules and Non-Thermally Biological Effect of Infrared Light. Monography for the University of Electronic Science and Technology of Chengdu, Chengdu, 300.
[71]
Pang, X.F. (2001) Vibrational Energy-Spectra of Protein Molecules and Non-Thermally Biological Effect of Infrared Light. Monography for the University of Electronic Science and Technology of Chengdu, Chengdu, 302.
[72]
Kotsias, B.A. Instituto de Investigaciones Médicas Alfredo Lanari, Facultad de Medicina, Universidad de Buenos Aires. (In Spanish)
[73]
Neural Action Potential Recorded by Hodgkin and Huxley in Their Experiments. https://www.google.com.ar/search?q=trabajo+de+Hodgkin+Eccles+y+Huxley
[74]
Teoría de solitones en la transmisión nerviosa. Medicina, (Buenos Aires), Vol. 64. (In Spanish)
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0025-76802004000300017
[75]
Trajectory of the Giant Axon on the Body of the Squid (Doryteuthis pealeii or L. forbesi) Image.
http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0025-76802004000300017
[76]
Eccles, J. Works in the Synapses of the Central Nervous System.
http://www.nobelprize.org/nobel_prizes/medicine/laureates/1963/
[77]
Hodgkin, A. (1992) Chance and Design. Cambridge University Press, Cambridge.
[78]
Huxley, A. (1988) Prefatory Chapter: Muscular Contraction. Annual Review of Physiology, 50, 1-16. https://doi.org/10.1146/annurev.ph.50.030188.000245
[79]
Kandel, E.R. (2000) Nobelprizelauréate. (In Spanish)
https://jralonso.es/2015/12/01/el-axon-gigante-del-calamar/
[80]
Ivanisevic, V.G. and Ivancevic, T.T. (2013) Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures. Journal of Geometry and Symmetry in Physics, 31, 24.
https://doi.org/10.7546/jgsp-31-2013-1-56
[81]
Ivanisevic, V.G. and Ivancevic, T.T. (2013) Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures. Journal of Geometry and Symmetry in Physics, 31, 26.
https://doi.org/10.7546/jgsp-31-2013-1-56
[82]
Chou, K.C. and Shen, H.B. (2009) Recent Advances in Developing Web-Servers for Predicting Protein Attributes. Natural Science, 2, 63-92.
https://doi.org/10.4236/ns.2009.12011
[83]
Lin, S.X. and Lapointe, J. (2013) Theoretical and Experimental Biology in One. Journal of Biomedical Science and Engineering, 6, 435.
https://doi.org/10.4236/jbise.2013.64054
[84]
Ivanisevic, V.G. and Ivancevic, T.T. (2013) Sine-Gordon Solitons, Kinks and Breathers as Physical Models of Nonlinear Excitations in Living Cellular Structures. Journal of Geometry and Symmetry in Physics, 31, 28-32.
https://doi.org/10.7546/jgsp-31-2013-1-56
[85]
Chou, K.C. and Chen, N.Y. (1977) The Biological Functions of Low-Frequency Phonons. Scientia Sinica, 20, 447-457.
[86]
Inchauspe, A.A. (2015) Therapeutic Acupunctural Resonance. 3rd Traditional Conference and Exhibition on Traditional & Alternative Medicines, 3-5 August 2015, Birmingham.
[87]
Inchauspe, A.A. (2017) Is Traditional Chinese Medicine Definitely an Exact Science? Comparison between Five Elements’ Theory and Euclid Regular Polyhedrons’ Postulates. EC Dental Science, 11, 255-277.
[88]
Briggs, J. and Peat, F.D. (1994) Espejo y Reflejo: Del caos al orden. Editorial Gedisa, Segunda Edición, Barcelona, Chapter 4, 129.
Hameroff, S. (2007) The Brain Is Both Neural Computer and Quantum Computer. Cognitive Science, 31, 1035-1045. https://doi.org/10.1080/03640210701704004
[91]
Sedlak, W. (1975) Dynamika Bioplazm Metabolizm. Kosmos, 24, 261-272.
[92]
Varela, F., Thompson, E. and Rosch, E. (1992) The-Emodied-Mind: Cognitive Science and Human Experience. Ed. Gedisa, Barcelona, 115. (In Spanish)