全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Biochar Application on Soil Carbon Fluxes from Sequential Dry and Wet Cultivation Systems

DOI: 10.4236/ajcc.2018.71005, PP. 40-53

Keywords: Greenhouse Gases, Carbon Emission, CO2, CH4, CO, Emission from Submergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

Application of biochar has been highly credited for its potential to sequester carbon and GHG mitigation from tropical agro-ecosystems. However, experiments show inconsistent results depending on soil and biochar type, cultivation system, climatic condition and the type of evolved GHGs. This study emphasized on the effect of biochar on carbon emission trends from a sequential dry and wet cultivation system of Bangladesh. An incubation study was conducted with two contrasting soils and eight different treatments viz. control, only fertilizer, three different biochars (10 t·ha-1) with and without recommended fertilizer dose. Results revealed the fact that, emission of carbon was substantially higher from Sara soil than Kalma soil. Biochar treatments did not have any easing effect on CO2 emission at field condition; rather, increased in most of the cases. However, emission was significantly (P < 0.05) suppressed at submerged condition by biochar application. Non-fertilized water hyacinth biochar was most effective in this regard. In general, fertilizer application caused higher emission of CO2. Biochar application was ineffective to control CH4 and CO release to atmosphere and submergence further intensified their emission significantly. The overall results indicate that applied biochars have negligible effect on carbon emission except for reducing CO2 from submerged soils.

References

[1]  Pachauri, R.K., Meyer, L., Plattner, G.K. and Stocker, T. (2015) IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, 151.
[2]  Wang, Y.Y., Hu, C.S., Ming, H., Zhang, Y.M., Li, X.X., Dong, W.X. and Oenema, O. (2013) Concentration Profiles of CH4, CO2 and N2O in Soils of a Wheat-Maize Rotation Ecosystem in North China Plain, Measured Weekly over a Whole Year. Agriculture, Ecosystems & Environment, 164, 260-272.
https://doi.org/10.1016/j.agee.2012.10.004
[3]  Stocker, T., Ed. (2014) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK.
[4]  Change, I.C. (2014) Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge and New York.
[5]  Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C. and Scholes, B. (2008) Greenhouse Gas Mitigation in Agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363.
https://doi.org/10.1098/rstb.2007.2184
[6]  Lehmann, J., Czimczik, C., Laird, D. and Sohi, S. (2009) Stability of Biochar in Soil. Biochar for Environmental Management: Science and Technology, 183-206.
[7]  Sohi, S.P., Krull, E., Lopez-Capel, E. and Bol, R. (2010) A Review of Biochar and Its Use and Function in Soil. Advances in Agronomy, 105, 47-82.
https://doi.org/10.1016/S0065-2113(10)05002-9
[8]  Lehmann, J. and Joseph, S. (2015) Biochar for Environmental Management: Science, Technology and Implementation. Routledge, New York.
[9]  Laird, D.A., Brown, R.C., Amonette, J.E. and Lehmann, J. (2009) Review of the Pyrolysis Platform for Coproducing Bio-Oil and Biochar. Biofuels, Bioproducts and Biorefining, 3, 547-562.
https://doi.org/10.1002/bbb.169
[10]  DeLuca, T.H., Gundale, M.J., MacKenzie, M.D. and Jones, D.L. (2015) Biochar Effects on Soil Nutrient Transformations. Biochar for Environmental Management: Science, Technology and Implementation, 2, 421-454.
[11]  Darby, I., Xu, C.Y., Wallace, H.M., Joseph, S., Pace, B. and Bai, S.H. (2016) Short-Term Dynamics of Carbon and Nitrogen Using Compost, Compost-Biochar Mixture and Organo-Mineral Biochar. Environmental Science and Pollution Research, 23, 11267-11278.
https://doi.org/10.1007/s11356-016-6336-7
[12]  Van Zwieten, L., Kammann, C., Cayuela, M., Singh, B.P., Joseph, S., Kimber, S., Donne, S., Clough, T. and Spokas, K. (2015) Biochar Effects on Nitrous Oxide and Methane Emissions from Soil. Biochar for Environmental Management: Science, Technology and Implementation, Routledge.
[13]  He, Y., Zhou, X., Jiang, L., Li, M., Du, Z., Zhou, G., Shao, J., Wang, X., Xu, Z., HosseiniBai, S. and Wallace, H. (2017) Effects of Biochar Application on Soil Greenhouse Gas Fluxes: A Meta-Analysis. GCB Bioenergy, 9, 743-755.
https://doi.org/10.1111/gcbb.12376
[14]  Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J. and Zhang, X. (2012) Effect of Biochar Amendment on Maize Yield and Greenhouse Gas Emissions from a Soil Organic Carbon Poor Calcareous Loamy Soil from Central China Plain. Plant and Soil, 351, 263-275.
https://doi.org/10.1007/s11104-011-0957-x
[15]  Song, X., Pan, G., Zhang, C., Zhang, L. and Wang, H. (2016) Effects of Biochar Application on Fluxes of Three Biogenic Greenhouse Gases: A Meta-Analysis. Ecosystem Health and Sustainability, 2, e01202.
[16]  Tongwane, M., Mdlambuzi, T., Moeletsi, M., Tsubo, M., Mliswa, V. and Grootboom, L. (2016) Greenhouse Gas Emissions from Different Crop Production and Management Practices in South Africa. Environmental Development, 19, 23-35.
[17]  Denman, K.L., Brasseur, G.P., Chidthaisong, A., Ciais, P., Cox, P.M., Dickinson, R.E., Hauglustaine, D.A., Heinze, C., Holland, E.A., Jacob, D.J. and Lohmann, U. (2007) Couplings between Changes in the Climate System and Biogeochemistry. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Climate Change 2007: The Physical Science Basis, Cambridge University Press, Cambridge, Chapter 7.
[18]  Jeffery, S., Verheijen, F.G., Kammann, C. and Abalos, D. (2016) Biochar Effects on Methane Emissions from Soils: A Meta-Analysis. Soil Biology and Biochemistry, 101, 251-258.
https://doi.org/10.1016/j.soilbio.2016.07.021
[19]  Prather, M.J. (1996) Time Scales in Atmospheric Chemistry: Theory, GWPs for CH4 and CO, and Runaway Growth. Geophysical Research Letters, 23, 2597-2600.
https://doi.org/10.1029/96GL02371
[20]  Potter, C.S., Klooster, S.A. and Chatfield, R.B. (1996) Consumption and Production of Carbon Monoxide in Soils: A Global Model Analysis of Spatial and Seasonal Variation. Chemosphere, 33, 1175-1193.
[21]  Hertwich, E.G. and Peters, G.P. (2009) Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environmental Science & Technology, 43, 6414-6420.
https://doi.org/10.1021/es803496a
[22]  FAO (2017) Rice Market Monitor. Trades and Market Division. Food and Agriculture Organization of the United Nations, Vol. 20, 1-38.
[23]  Khan, R.U. and Saleh, A.F.M. (2015) Model-Based Estimation of Methane Emission from Rice Fields in Bangladesh. Journal of Agricultural Engineering and Biotechnology, 3, 125-137.
[24]  USDA (United States Department of Agriculture) (1951) Soil Survey Manual. Soil Survey Staff, Bureau of Plant Industry, Soil and Agricultural Engineering, United States Department of Agriculture, Washington DC, 18, 205.
[25]  Piash, M.I., Hossain, M.F. and Parveen, Z. (2017) Physico-Chemical Properties and Nutrient Content of Some Slow Pyrolysis Biochars Produced from Different Feedstocks. Bangladesh Journal of Scientific Research, 29, 111-122.
https://doi.org/10.3329/bjsr.v29i2.32327
[26]  Web 1: Online Fertilizer Recommendation System.
http://frs-bd.com/
[27]  Liu, Y., Wan, K.Y., Tao, Y., Li, Z.G., Zhang, G.S., Li, S.L. and Chen, F. (2013) Carbon Dioxide Flux from Rice Paddy Soils in Central China: Effects of Intermittent Flooding and Draining Cycles. PLoS ONE, 8, e56562.
https://doi.org/10.1371/journal.pone.0056562
[28]  Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y. and Wu, W. (2011) Reducing CH4 and CO2 Emissions from Waterlogged Paddy Soil with Biochar. Journal of Soils and Sediments, 11, 930-939.
https://doi.org/10.1007/s11368-011-0376-x
[29]  Feng, Y., Xu, Y., Yu, Y., Xie, Z. and Lin, X. (2012) Mechanisms of Biochar Decreasing Methane Emission from Chinese Paddy Soils. Soil Biology and Biochemistry, 46, 80-88.
https://doi.org/10.1016/j.soilbio.2011.11.016
[30]  Khan, S., Chao, C., Waqas, M., Arp, H.P.H. and Zhu, Y.G. (2013) Sewage Sludge Biochar Influence upon Rice (Oryza sativa L.) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environmental Science & Technology, 47, 8624-8632.
https://doi.org/10.1021/es400554x
[31]  Han, X., Sun, X., Wang, C., Wu, M., Dong, D., Zhong, T., Thies, J.E. and Wu, W. (2016) Mitigating Methane Emission from Paddy Soil with Rice-Straw Biochar Amendment under Projected Climate Change. Scientific Reports, 6, Article No. 24731.
https://doi.org/10.1038/srep24731
[32]  Mahmud, K., Chowhdhury, M.S., Noor, N. and Huq, S.M.I. (2014) Effects of Different Sources of Biochar Application on the Emission of a Number of Gases from Soil. Canadian Journal of Pure and Applied Sciences, 8, 2813-2824.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133