全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Commutativity of a *-Ring with Generalized Left *-α-Derivation

DOI: 10.4236/apm.2018.82009, PP. 168-177

Keywords: *-Ring, Prime *-Ring, Generalized Left *-α-Derivation, Generalized *-α-Derivation

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, it is defined that left *-α-derivation, generalized left *-α-derivation and *-α-derivation, generalized *-α-derivation of a *-ring where α is a homomorphism. The results which proved for generalized left *-derivation of R in [1] are extended by using generalized left *-α

References

[1]  Rehman, N., Ansari, A.Z. and Haetinger, C. (2013) A Note on Homomorphisms and Anti-Homomorphisms on *-Ring. Thai Journal of Mathematics, 11, 741-750.
[2]  Bresar, M. and Vukman, J. (1989) On Some Additive Mappings in Rings with Involution. Aequationes Mathematicae, 38, 178-185.
https://doi.org/10.1007/BF01840003
[3]  Ali, S. (2012) On Generalized *-Derivations in *-Rings. Palestine Journal of Mathematics, 1, 32-37.
[4]  Bell, H.E. and Kappe, L.C. (1989) Ring in Which Derivations Satisfy Certain Algebraic Conditions. Acta Mathematica Hungarica, 53, 339-346.
https://doi.org/10.1007/BF01953371
[5]  Rehman, N. (2004) On Generalized Derivations as Homomorphisms and Anti-Homomorphisms. Glasnik Matematicki, 39, 27-30.
https://doi.org/10.3336/gm.39.1.03
[6]  Dhara, B. (2012) Generalized Derivations Acting as a Homomorphism or Anti-Homomorphism in Semiprime Rings. Beiträge zur Algebra und Geometrie, 53, 203-209.
https://doi.org/10.1007/s13366-011-0051-9
[7]  Ali, S. (2011) On Generalized Left Derivations in Rings and Banach Algebras. Aequationes Mathematicae, 81, 209-226.
https://doi.org/10.1007/s00010-011-0070-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133