全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Iterative Reweighted l1 Penalty Regression Approach for Line Spectral Estimation

DOI: 10.4236/apm.2018.82008, PP. 155-167

Keywords: Line Spectral Estimation, Penalty Regression, Bayesian Lasso, Iterative Reweighted Approach

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we proposed an iterative reweighted l1penalty regression approach to solve the line spectral estimation problem. In each iteration process, we first use the ideal of Bayesian lasso to update the sparse vectors; the derivative of the penalty function forms the regularization parameter. We choose the anti-trigonometric function as a penalty function to approximate the?l0 norm. Then we use the gradient descent method to update the dictionary parameters. The theoretical analysis and simulation results demonstrate the effectiveness of the method and show that the proposed algorithm outperforms other state-of-the-art methods for many practical cases.

References

[1]  Chi, Y.J., Scharf, L.L., Pezeshki, A. and Calderbank, A.R. (2011) Sensitivity to Basis Mismatch in Compressed Sensing. IEEE Transactions on Signal Process, 59, 2182-2195.
https://doi.org/10.1109/TSP.2011.2112650
[2]  Tan, Z., Yang, P. and Nehorai, A. (2014) Joint Sparse Recovery Method for Compressed Sensing with Structured Dictionary Mismatches. IEEE Transactions on Signal Process, 62, 4997-5008.
https://doi.org/10.1109/TSP.2014.2343940
[3]  Fannjiang, A. and Liao, W. (2014) Coherence Pattern-Guided Compressive Sensing with Unresolved Grids. SIAM Journal on Imaging Sciences, 5, 179-202.
https://doi.org/10.1137/110838509
[4]  Duarte, M.F. and Baraniuk, R.G. (2013) Spectral Compressive Sensing. Applied and Computational Harmonic Analysis, 35, 111-129.
https://doi.org/10.1016/j.acha.2012.08.003
[5]  Candes, E. and Fernandez-Granda, C. (2014) Towards a Mathematical Theory of Super-Resolution. Communications on Pure and Applied Mathematics, 67, 906-956.
https://doi.org/10.1002/cpa.21455
[6]  Tang, G., Bhaskar, B.N., Shah, P. and Recht, B. (2013) Compressed Sensing Off the Grid. IEEE Transactions on Information Theory, 59, 7465-7490.
https://doi.org/10.1109/TIT.2013.2277451
[7]  Hansen, T.L., Badiu, M.A., Fleury, B.H. and Rao, B.D. (2014) A Sparse Bayesian Learning Algorithm with Dictionary Parameter Estimation. Sensor Array and Multichannel Signal Processing Workshop, A Coruna, 22-25 June 2014, 385-388.
https://doi.org/10.1109/SAM.2014.6882422
[8]  Hu, L., Shi, Z., Zhou, J. and Fu, Q. (2012) Compressed Sensing of Complex Sinusoids: An Approach Based on Dictionary Refinement. IEEE Transactions on Signal Process, 60, 3809-3822.
https://doi.org/10.1109/TSP.2012.2193392
[9]  Fang, J., Li, J., Shen, Y., Li, H. and Li, S. (2014) Super-Resolution Compressed Sensing: An Iterative Reweighted Algorithm for Joint Parameter Learning and Sparse Signal Recovery. IEEE Transactions on Signal Process, 21, 761-765.
https://doi.org/10.1109/LSP.2014.2316004
[10]  Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the royal Statistical Society. Series B, 58, 276-288.
[11]  Fang, J., Wang, F., Shen, Y. and Li, H. (2016) Super-Resolution Compressed Sensing for Line Spectral Estimation: An Iterative Reweighted Approach. IEEE Transactions on Signal Process, 64, 4649-4672.
https://doi.org/10.1109/TSP.2016.2572041
[12]  Lai, M.J., Xu, Y. and Yin, W. (2013) Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed lq Minimization Estimation. SIAM Journal on Numerical Analysis, 51, 927-957.
https://doi.org/10.1137/110840364
[13]  Andrieu, C., Freitas, N. and Doucet, A. (2003) An Introduction to MCMC for Machine Learning. Machine Learning, 50, 5C43.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133