Due to global land surface warming, severe temperature events are expected to occur more frequently and more extremely causing changes in biodiversity and altering movement and survival of large herbivores. There are increasing observations of escalating wildlife range losses worldwide. In this study, we investigated 15 large wild herbivores (4 migratory, 1 dispersing and 10 residents) and their potential range changes in relation to projected temperatures changes based on three Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5. Previous studies of Kenyan savannah have shown that increases in temperature can reduce the densities of wildlife significantly and after certain thresholds the species can be lost in those landscapes. The range maps of the 15 species were developed from aerial censuses that have been conducted in the arid and semi-arid lands of Kenya. We analysed temperature changes for the three RCPs for the periods 2030s, 2050s and 2070s. And based on the temperature threshold for each of the 15 species we analysed which wildlife range areas will be lost. Our results project that for the RCP 2.6, 3 out of the 15 species are projected to lose more than 50% of their range by the year 2030s, and 5 out 15 by 2050s and 4 of 15 by 2070s. The second climate scenario of RCP 4.5 projects that by 2030s, 3 species will lose more than 50% of their range, and in 2050s and 2070s 5 species. The RCP 8.5 which is the extreme scenario of temperature changes projects 5 species to lose their range by 50% in 2030s, 7 species by 2050s and 10 species by 2070s. The extent of range loss was different among species but was severe for buffalo, Thomson’s gazelle, waterbuck, and wildebeest which are also water dependent species. However, the elephant, gerenuk, hartebeest, lesser kudu, and oryx are expected to retain most of their range in all the RCPs scenarios. These range contractions raise serious concerns about the future of wildlife in Kenyan savannah based on projected climate changes. And therefore, it is imperative the wildlife sector develops climate policies and plans that take into account the projected climate scenarios.
References
[1]
Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. and Hanson, C.E. (2007) Climate Change 2007—Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 976 p.
[2]
Hartmann, D.L., Klein Tank, A.M.G., Rusticucci, M., Alexander, L.V., Brönnimann, S., Charabi, Y.A.R., Dentener, F.J., Dlugokencky, E.J., Easterling, D.R., Kaplan, A., Soden, B.J., Thorne, P.W., Wild, M. and Zhai, P. (2013) Observations: Atmosphere and Surface. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 159-254.
https://doi.org/10.1017/CBO9781107415324.008
[3]
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A.J. and Wehner, M. (2013) Long-Term Climate Change: Projections, Commitments and Irreversibility. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 1029-1136.
https://doi.org/10.1017/CBO9781107415324.024
[4]
Piniewski, M., Mezghani, A., Szczesniak, M. and Kundzewicz, Z. (2017) Regional Projections of Temperature and Precipitation Changes: Robustness and Uncertainty Aspects. Meteorologische Zeitschrift, 26, 223-234.
[5]
Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (2013) Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 p.
[6]
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. and Courchamp, F. (2012) Impacts of Climate Change on the Future of Biodiversity. Ecology Letters, 15, 365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
[7]
Msoffe, F.U., Ogutu, J.O., Kaaya, J., Bedelian, C., Said, M.Y., Kifugo, S.C. and Thirgood, S. (2009) Participatory Wildlife Surveys in Communal Lands: A Case Study from Simanjiro, Tanzania. African Journal of Ecology, 48, 727-735.
https://doi.org/10.1111/j.1365-2028.2009.01170.x
[8]
Staudinger, M.D, Carter, S.L., Cross, M.S., Dubois, N.S., Duffy, J.E., Enquist, C., Griffis, R., Hellmann, J., Lawler, J., O’Leary, J., Morrison, S.A., Sneddon, L., Stein, B.A., Thompson, L. and Turner, W. (2013) Biodiversity in a Changing Climate: A Synthesis of Current and Projected Trends in the US. Frontiers in Ecology and the Environment, 11, 465-464. https://doi.org/10.1890/120272
[9]
Niang, I., Ruppel, O.C., Abdrabo, M.A., Essel, A., Lennard, C., Padgham, J. and Urquhart, P. (2014) Africa. In: Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R. and White, L.L., Eds., Climate Change 2014—Impacts, Adaptation and Vulnerability: Part B: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report, Cambridge University Press, Cambridge, 1199-1265.
[10]
Res, C., Hulme, M., Doherty, R., Ngara, T., New, M. and Lister, D. (2001) African Climate Change: 1900-2100. Climate Research, 17, 145-168.
https://doi.org/10.3354/cr017145
[11]
Coe, R. and Stern, R.D. (2011) Assessing and Addressing Climate-Induced Risk in Sub-Saharan Rainfed Agriculture: Lessons Learned. Experimental Agriculture, 47, 395-410. https://doi.org/10.1017/S001447971100010X
[12]
Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F.N., de Siqueira, M.F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A.S., Midgley, G.F., Miles, L., Ortega-Huerta, M.A., Peterson, A.T., Phillips, O.L. and Williams, S.E. (2004) Extinction Risk From Climate Change. Nature, 427, 145-148. https://doi.org/10.1038/nature02121
[13]
Ceballos, G., Ehrlich, P.R. and Dirzo, R. (2017) Biological Annihilation via the Ongoing Sixth Mass Extinction Signaled by Vertebrate Population Losses and Declines. Proceedings of the National Academy of Sciences, 114, E6089-E6096.
https://doi.org/10.1073/pnas.1704949114
[14]
Parmesan, C., Burrows, M.T., Duarte, C.M., Poloczanska, E.S., Richardson, A.J., Schoeman, D.S. and Singer, M.C. (2013) Beyond Climate Change Attribution in Conservation and Ecological Research. Ecology Letters, 16, 58-71.
https://doi.org/10.1111/ele.12098
[15]
Monzón, J., Moyer-Horner, L. and Palamar, M.B. (2011) Climate Change and Species Range Dynamics in Protected Areas. BioScience, 61, 752-761.
https://doi.org/10.1525/bio.2011.61.10.5
[16]
Wiens, J.J. (2016) Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLoS Biology, 14, e2001104.
https://doi.org/10.1371/journal.pbio.2001104
[17]
Jetz, W., Wilcove, D.S. and Dobson, A.P. (2007) Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds. PLoS Biology, 5, 1211-1219.
https://doi.org/10.1371/journal.pbio.0050157
[18]
Sekercioglu, C.H., Schneider, S.H., Fay, J.P. and Loarie, S.R. (2008) Climate Change, Elevational Range Shifts, and Bird Extinctions. Conservation Biology, 22, 140-150.
https://doi.org/10.1111/j.1523-1739.2007.00852.x
[19]
Said, M.Y., Ogutu, J.O., Kifugo, S.C., Makui, O., Reid, R.S. and de Leeuw, J. (2016) Effects of Extreme Land Fragmentation on Wildlife and Livestock Population Abundance and Distribution. Journal for Nature Conservation, 34, 151-164.
https://doi.org/10.1016/j.jnc.2016.10.005
[20]
Ogutu, J.O., Piepho, H., Said, M.Y., Ojwang, G.O., Njino, L.W., Kifugo, S.C. and Wargute, P.W. (2016) Extreme Wildlife Declines and Concurrent Increase in Livestock Numbers in Kenya: What Are the Causes? PLoS ONE, 11, e0163249.
https://doi.org/10.1371/journal.pone.0163249
[21]
Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., et al. (2010) The Next Generation of Scenarios for Climate Change Research and Assessment. Nature, 463, 747-756. https://doi.org/10.1038/nature08823
Ogutu, J.O., Piepho, H.-P., Said, M.Y. and Kifugo, S.C. (2014) Herbivore Dynamics and Range Contraction in Kajiado County Kenya: Climate and Land Use Changes, Population Pressures, Governance, Policy and Human-Wildlife Conflicts. The Open Ecology Journal, 7, 9-31. https://doi.org/10.2174/1874213001407010009
[24]
Western, D., Groom, R. and Worden, J. (2009) The Impact of Subdivision and Sedentarization of Pastoral Lands on Wildlife in an African Savanna Ecosystem. Biological Conservation, 142, 2538-2546. https://doi.org/10.1016/j.biocon.2009.05.025
[25]
Bhola, N., Ogutu, J.O., Said, M.Y., Piepho, H.-P. and Olff, H. (2012) The Distribution of Large Herbivore Hotspots in Relation to Environmental and Anthropogenic Correlates in the Mara region of Kenya. Journal of Animal Ecology, 81, 1268-1287.
https://doi.org/10.1111/j.1365-2656.2012.02000.x
[26]
Coe, M.D., Cummings, D.H. and Phillipson, J. (1976) Biomass and Production of Large Herbivores in Relation to Rainfall and Primary Production. Oecologia, 22, 341-354. https://doi.org/10.1007/BF00345312
[27]
IPCC (2013) Summary for Policymakers. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., Eds., Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
[28]
Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G. and Rafaj, P. (2011) RCP 8.5-A Scenario of Comparatively High Greenhouse Gas Emissions. Climatic Change, 109, 33-57. https://doi.org/10.1007/s10584-011-0149-y
[29]
van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K. and Rose, S.K. (2011) The Representative Concentration Pathways: An Overview. Climatic Change, 109, 5-31. https://doi.org/10.1007/s10584-011-0148-z
[30]
Giorgi, F. (2006) Climate Change Hot-Spots. Geophysical Research Letters, 33, 1-4.
https://doi.org/10.1029/2006GL025734
[31]
Burnham, K.P. and Anderson, D.R. (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd Edition, Springer, Berlin.
[32]
Davidson, A.D., Hamilton, M.J., Boyer, A.G., Brown, J.H. and Ceballos, G. (2009) Multiple Ecological Pathways to Extinction in Mammals. Proceedings of the National Academy of Sciences, 106, 10702-10705.
https://doi.org/10.1073/pnas.0901956106
[33]
Hilbers, J.P., Schipper, A.M., Hendriks, A.J., Verones, F. and Pereira, H.M. (2016) An Allometric Approach to Quantify the Extinction Vulnerability of Birds and Mammals. Ecology, 97, 615-626. https://doi.org/10.1890/14-2019.1
[34]
Cardillo, M., Mace, G.M., Jones, K.E., Bielby, J., Bininda-emonds, O.R.P., Sechrest, W. and Purvis, A. (2005) Multiple Causes of High Extinction Risk in Large Mammal Species. Science, 1067, 1239-1241. https://doi.org/10.1126/science.1116030
[35]
Ogutu, J.O., Owen-Smith, N., Piepho, H.-P., Said, M.Y., Kifugo, S.C., Reid, R.S., Gichohi, H., Kahumbu, P. and Andanje, S (2013) Changing Wildlife Populations in Nairobi National Park and Adjoining Athi-Kaputiei Plains: Collapse of the Migratory Wildebeest. Open Conservation Biology Journal, 7, 11-26.
https://doi.org/10.2174/1874839201307010011
[36]
Field, C.B., Barros, V.R., Mach, K.J., Mastrandrea, M.D., van Aalst, M., Adger, W.N., Arent, D.J., Barnett, J., Betts, R., Bilir, T.E., Birkmann, J., Carmin, J., Chadee, D.D., Challinor, A.J., Chatterjee, M., Cramer, W., Davidson, D.J., Estrada, Y.O., Gattuso, J.-P., Hijoka, Y., Hoegh-Guldberg, O., Huang, H.-Q., Insarov, G.E., Jones, R.N., Kovats, R.S., et al. (2014) Technical Summary. Climate Change 2014—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report, Cambridge University Press, Cambridge, 35-94. https://doi.org/10.1017/CBO9781107415379.004
[37]
Moss, C.J., Croze, H. and Lee, P.C. (2011) The Amboseli Elephants: A Long-Term Perspective on a Long-Lived Mammal. University of Chicago Press, Chicago, IL, 383 p. https://doi.org/10.7208/chicago/9780226542263.001.0001
[38]
Ishida, Y., Van Coeverden de Groot, P.J., Leggett, K.E.A., Putnam, A.S., Fox, V.E., Lai, J., Boag, P.T., Georgiadis, N.J. and Roca, A.L. (2016) Genetic Connectivity across Marginal Habitats: The Elephants of the Namib Desert. Ecology and Evolution, 6, 6189-6201. https://doi.org/10.1002/ece3.2352
[39]
Junker, J., van Aarde, R.J. and Ferreira, S.M. (2008) Temporal Trends in Elephant Loxodonta africana Numbers and Densities in Northern Botswana: Is the Population Really Increasing? Oryx, 42, 58-65. https://doi.org/10.1017/S0030605308000756
[40]
Ojwang’, G.O., Wargute, P.W., Said, M.Y., Worden, J.S., Davidson, Z., Muruthi, P. and Okita-Ouma, B. (2017) Wildlife Migratory Corridors and Dispersal Areas: Kenya Rangelands and Coastal Terrestrial Ecosystems. Tourist Management Perspectives.
http://www.kws.go.ke/content/launch-report-wildlife-corridors-and-dispersal-areas
[41]
Clobert, J., Danchin, é., Dhondt, A.A. and Nichols, J.D. (2001) Dispersal. Oxford University Press, New York.
[42]
Grainger, T.N., Germain, R.M., Jones, N.T. and Gilbert, B. (2017) Predators Modify Biogeographic Constraints on Species Distributions in an Insect Metacommunity. Ecology, 98, 851-860. https://doi.org/10.1002/ecy.1712
[43]
Smith, F.A. and Lyons, S.K. (2011) How Big Should a Mammal Be? A Macroecological Look at Mammalian Body Size over Space and Time. Philosophical Transactions of the Royal Society B, 366, 2364-2378. https://doi.org/10.1098/rstb.2011.0067
[44]
Jessen, C. (2001) Temperature Regulation in Humans and Other Mammals. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-59461-8
[45]
Western, D. and Nightingale, D. (2004) Environmental Change and the Vulnerability of Pastoralists to Drought: A Case Study of the Maasai in Amboseli, Kenya. Africa Environment Outlook Case Studies: Human Vulnerability to Environmental Change, 31-50.
[46]
Hannah, L., Midgley, G., Andelman, S., Araújo, M., Hughes, G., Martinez-Meyer, E., Pearson, R. and Williams, P. (2007) Protected Area Needs in a Changing Climate. Frontiers in Ecology and the Environment, 5, 131-138.
[47]
Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. and Thuiller, W. (2011) Climate Change Threatens European Conservation Areas. Ecology Letters, 14, 484-492. https://doi.org/10.1111/j.1461-0248.2011.01610.x
[48]
Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. and Mace, G.M. (2011) Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science, 332, 53-58. https://doi.org/10.1126/science.1200303