Based on a general theory of descendant trees of finite p-groups and the virtual periodicity isomorphisms between the branches of a coclass subtree, the behavior of algebraic invariants of the tree vertices and their automorphism groups under these isomorphisms is described with simple transformation laws. For the tree of finite 3-groups with elementary bicyclic commutator qu-otient, the information content of each coclass subtree with metabelian main-line is shown to be finite. As a striking novelty in this paper, evidence is provided of co-periodicity isomorphisms between coclass forests which reduce the information content of the entire metabelian skeleton and a significant part of non-metabelian vertices to a finite amount of data.
References
[1]
du Sautoy, M. (2001) Counting p-Groups and Nilpotent Groups. Publications Mathématiques de l'Institut des Hautes études Scientifiques, 92, 63-112. https://doi.org/10.1007/BF02698914
[2]
Eick, B. and Leedham-Green, C. (2008) On the Classification of Prime-Power Groups by Coclass. Bulletin of the London Mathematical Society, 40, 274-288. https://doi.org/10.1112/blms/bdn007
[3]
Leedham-Green, C.R. (1994) The Structure of Finite p-Groups. Journal of the London Mathematical Society, 50, 49-67. https://doi.org/10.1112/jlms/50.1.49
[4]
Shalev, A. (1994) The Structure of Finite p-Groups: Effective Proof of the Coclass Conjectures. Inventiones Mathematicae, 115, 315-345.
[5]
du Sautoy, M. and Segal, D. (2000) Zeta Functions of Groups. New Horizons in Pro-p Groups, Progress in Mathematics, Vol. 184, Birkhäuser, Basel, 249-286.
[6]
Eick, B. (2015) Metabelian p-Groups and Coclass Theory. Journal of Algebra, 421, 102-118. https://doi.org/10.1016/j.jalgebra.2014.08.021
[7]
Nebelung, B. (1989) Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3, 3) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation (W. Jehne), Band 1, Universität zu Köln.
[8]
Leedham-Green, C.R. and Newman, M.F. (1980) Space Groups and Groups of Prime Power Order I. Archiv der Mathematik, 35, 193-203. https://doi.org/10.1007/BF01235338
[9]
Blackburn, N. (1958) On a Special Class of p-Groups. Acta Mathematica, 100, 45-92. https://doi.org/10.1007/BF02559602
[10]
Mayer, D.C. (2016) Artin Transfer Patterns on Descendant Trees of Finite p-Groups. Advances in Pure Mathematics, 6, 66-104.
[11]
Mayer, D.C. (2012) Transfers of Metabelian p-Groups. Monatshefte für Mathematik, 166, 467-495.
[12]
Newman, M.F. (1975) Determination of Groups of Prime-Power Order. Group Theory, Canberra, Lecture Notes in Math., vol. 573, Springer, Berlin, 73-84. https://doi.org/10.1007/BFb0087814
[13]
O’Brien, E.A. (1990) The p-Group Generation Algorithm. Journal of Symbolic Computation, 9, 677-698. https://doi.org/10.1016/S0747-7171(08)80082-X
[14]
Holt, D.F., Eick, B. and O’Brien, E.A. (2005) Handbook of Computational Group Theory, Discrete Mathematics and Its Applications. Chapman and Hall/CRC Press. https://doi.org/10.1201/9781420035216
[15]
Bosma, W., Cannon, J. and Playoust, C. (1997) The Magma Algebra System. I. The User Language. Journal of Symbolic Computation, 24, 235-265. https://doi.org/10.1006/jsco.1996.0125
[16]
Bosma, W., Cannon, J.J., Fieker, C. and Steels, A., Eds. (2017) Handbook of Magma Functions. Edition 2.23, Sydney.
[17]
MAGMA Developer Group, MAGMA Computational Algebra System, Version 2.23-6, Sydney, 2017. http://magma.maths.usyd.edu.au
[18]
Besche, H.U., Eick, B. and O’Brien, E.A. (2002) A Millennium Project: Constructing Small Groups. International Journal of Algebra and Computation, 12, 623-644. https://doi.org/10.1142/S0218196702001115
[19]
Besche, H.U., Eick, B. and O’Brien, E.A. (2005) The Small Groups Library—A Library of Groups of Small Order, an Accepted and Refereed GAP Package, Available Also in MAGMA.
[20]
Gamble, G., Nickel, W. and O’Brien, E.A. (2006) ANUPQ—p-Quotient and p-Group Generation Algorithms, an Accepted GAP Package, Available Also in MAGMA.
[21]
Ascione, J.A. (1979) On 3-Groups of Second Maximal Class. Ph.D. Thesis, (M. F. Newman), Australian National University, Canberra.
[22]
Ascione, J.A. (1980) On 3-Groups of Second Maximal Class. Bulletin of the Australian Mathematical Society, 21, 473-474. https://doi.org/10.1017/S0004972700006298
[23]
Ascione, J.A., Havas, G. and Leedham-Green, C.R. (1977) A Computer Aided Classification of Certain Groups of Prime Power Order. Bulletin of the Australian Mathematical Society, 17, 257-274, Corrigendum, 317-319, Microfiche Supplement, 320.
[24]
Mayer, D.C. (2015) Periodic Bifurcations in Descendant Trees of Finite p-Groups. Advances in Pure Mathematics, 5, 162-195.
[25]
Mayer, D.C. (2018) Modeling Rooted In-Trees by Finite p-Groups, to Appear in the Open Access Book Graph Theory. In: Sirmacek, B., Ed., InTech. http://www.algebra.at/ModelingInTrees.pdf
[26]
Newman, M.F. (1990) Groups of Prime-Power Order, Groups, Canberra 1989. Lecture Notes in Math., 1456, Springer, 49-62.
[27]
Blackburn, N. (1957) On Prime-Power Groups in Which the Derived Group Has Two Generators. Proceedings of the Cambridge Philosophical Society, 53, 19-27. https://doi.org/10.1017/S0305004100031959
[28]
Nebelung, B. (1989) Anhang zu Klassifikation metabelscher 3-Gruppen mit Faktorkommutatorgruppe vom Typ (3, 3) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 2, Universität zu Köln.
[29]
Boston, N., Bush, M.R. and Hajir, F. (2017) Heuristics for p-Class Towers of Imaginary Quadratic Fields. Mathematische Annalen, 368, 633-669.
[30]
Boston, N., Bush, M.R. and Hajir, F. (2017) Heuristics for p-Class Towers of Real Quadratic Fields.