We calculate the core-hole spectral density in a pristine graphene, where the density of states of itinerant electrons goes linearly to zero at the Fermi level. We consider explicitly two models of electron-hole interaction. In the unscreened Coulomb interaction model, the spectral density is similar to that in metal (for local interaction). Thus there is no δ-function singularity in the core-hole spectral density. In the local interaction model, the δ-function singularity survives, but the interaction leads to the appearance of the background in the spectral density.
References
[1]
Mahan, G. (1967) Exitons in Metals: Infinite Hole Mass. Physical Review, 163, 612-617.
[2]
Anderson, P.W. (1967) Infrared Catastrophe in Fermi Gases with Local Scattering Potentials. Physical Review Letters, 18, 1049-1051.
http://doi.org/10.1103/Phys.Rev.Lett.18.1049
[3]
Nozieres, P. and de Dominicis, C.T. (1969) Singularities in the X-Ray Absorption and Emission of Metals. III. One-Body Theory Exact Solution. Physical Review, 178, 1097-1107.
[4]
Schotte, K.D. and de Schotte, U. (1969) Tomonaga’s Model and the Threshold Singularity of X-Ray Spectra of Metals. Physical Review, 182, 479-482.
[5]
Doniach, S. and Sondheimer, E.H. (1998) Green’s Functions for Solid State Physicists. Imperial College Press, London. https://doi.org/10.1142/p067
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009) The Electronic Properties of Graphene. Reviews of Modern Physics, 81, 109-162. http://doi.org/10.1103/RevModPhys.81.109
[8]
Yang, S.-R.E. and Lee, H.C. (2007) X-Ray Edge Problem of Graphene. Phys. Rev. B, 76, 245411-1-245411-7.
[9]
Gonzalez, J., Guinea, F. and Vozmediano, M.A.H. (1993) Electrostatic Screening in Fullerene Molecules. Modern Physics Letters B, 7, 1593-1599.
http://doi.org/10.1142/S0217984993001612
[10]
Roder, G., Tkachov, G. and Hentschel, M. (2011) Photoabsorption Spectra and the X-Ray Edge Problem in Graphene. Europhysics Letters, 94, 67002-p1-67002-p6.
https://doi.org/10.1209/0295-5075/94/67002