In Linear Programming (LP) applications, unexpected non binding constraints are among the “why” questions that can cause a great deal of debate. That is, those constraints that are expected to have been active based on price signals, market drivers or manager’s experiences. In such situations, users have to solve many auxiliary LP problems in order to grasp the underlying technical reasons. This practice, however, is cumbersome and time-consuming in large scale industrial models. This paper suggests a simple solution-assisted methodology, based on known concepts in LP, to detect a sub set of active constraints that have the most preventing impact on any non binding constraint at the optimal solution. The approach is based on the marginal rate of substitutions that are available in the final simplex tableau. A numerical example followed by a real-type case study is provided for illustration.
References
[1]
Bixby, R. (2012) Documenta Mathematica. Extra Volume ISMP, 107-121.
[2]
Charnes, A., Cooper, W.W. and Mellon, B. (1952) Blending Aviation Gasoline—A Study in Programming Interdependent Activities in an Integrated Oil Company. Econometrica, 20, 135-139. https://doi.org/10.2307/1907844
[3]
Geoffrion, A. (1976) The Purpose of Mathematical Modeling Is Insight, Not Numbers. Interfaces, 7, 81-92. https://doi.org/10.1287/inte.7.1.81
[4]
Greenberg, H.J. (1987) ANALYZE: A Computer-Assisted Analysis System for Linear Programming Model. Operational Research Letters, 76, 249-255.
https://doi.org/10.1016/0167-6377(87)90057-5
[5]
Greenberg, H.J. (1991) Intelligent Analysis Support for Linear Programs. Computers Chemical Engineering, 16, 659-673.
https://doi.org/10.1016/0098-1354(92)80015-2
[6]
Greenberg, H.J. (1991) A Primer for ANALYZE: A Computer-Assisted Analysis System for Mathematical Programming Models and Solutions. Operations Research Society of America, Baltimore, MD.
[7]
Greenberg, H.J. (1993) How to Analyze the Results of Linear Programs, Part 2: Price Interpretation Interfaces. 23, 97-114. https://doi.org/10.1287/inte.23.5.97
[8]
Greenberg, H.J. (1996) A Bibliography for the Development of an Intelligent Mathematical Programming System. Annals of Operations Research, 65, 55-90.
https://doi.org/10.1007/BF02187327
[9]
Borgonovoa, E. and Plischke, E. (2016) Sensitivity Analysis: A Review of Recent Advances. European Journal of Operational Research, 248, 869-887.
https://doi.org/10.1016/j.ejor.2015.06.032
[10]
Paris, Q. (2013) An Economic Interpretation of Linear Programming. Revised Edition, Palgrave Mcmillan.
[11]
Tehrani Nejad, M.A. (2007) Allocation of CO2 Emissions in Petroleum Refineries to Petroleum Joint Products: A Linear Programming Model for Practical Application. Energy Economics, 29, 974-977. https://doi.org/10.1016/j.eneco.2006.11.005
[12]
Tehrani Nejad, M.A. and Michelot, Ch. (2009) A Contribution to the Linear Programming Approach in Joint Cost Allocation: Methodology and Application. European Journal of Operational Research, 197, 999-1011.
https://doi.org/10.1016/j.ejor.2007.12.043
[13]
Tehrani Nejad, M.A. and Saint-Antonin, V. (2014) Factors Driving Refinery CO2 Intensity with Allocation into Products: Comments. International Journal of Life Cycle Assessment, 19, 24-28. https://doi.org/10.1007/s11367-013-0634-9
[14]
Rosenthal, R.E. (2015) GAMS, a User’s Guide. GAMS Development Corporation, Washington DC.
[15]
Tehrani Nejad, M.A. and Saint-Antonin, V. (2008) Impact of Tightening the Sulfur Specifications on the Automotive Fuels’ CO2 Contribution: A French Refinery Case Study. Energy Policy, 36, 2293-2770.