全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Empirical Analysis of Decision Making of an AI Agent on IBM’s 5Q Quantum Computer

DOI: 10.4236/ns.2018.101004, PP. 45-58

Keywords: Quantum Computation, Quantum Machine Learning, Quantum Reinforcement Learning, Quantum Circuit

Full-Text   Cite this paper   Add to My Lib

Abstract:

A recent work has shown that using an ion trap quantum processor can speed up the decision making of a reinforcement learning agent. Its quantum advantage is observed when the external environment changes, and then agent needs to relearn again. One character of this quantum hardware system discovered in this study is that it tends to overestimate the values used to determine the actions the agent will take. IBM’s five qubit superconducting quantum processor is a popular quantum platform. The aims of our study are twofold. First we want to identify the hardware characteristic features of IBM’s 5Q quantum computer when running this learning agent, compared with the ion trap processor. Second, through careful analysis, we observe that the quantum circuit employed in the ion trap processor for this agent could be simplified. Furthermore, when tested on IBM’s 5Q quantum processor, our simplified circuit demonstrates its enhanced performance over the original circuit on one of the hard learning tasks investigated in the previous work. We also use IBM’s quantum simulator when a good baseline is needed to compare the performances. As more and more quantum hardware devices are moving out of the laboratory and becoming generally available to public use, our work emphasizes the fact that the features and constraints of the quantum hardware could take a toll on the performance of quantum algorithms.

References

[1]  Schuld, M., Fingerhuth, M. and Petruccione, F. (2017) Implementing a Distance-Based Classifier with a Quantum Interference Circuit. A Letters Journal of Exploring the Frontiers of Physics, 119, 60002.
[2]  Schuld, M., Sinayskiy, I. and Petruccione, F. (2016) Prediction by Linear Regression on a Quantum Computer. Physical Review A, 94, Article ID: 022342.
https://doi.org/10.1103/PhysRevA.94.022342
[3]  Schuld, M., Sinayskiy, I. and Petruccione, F. (2015) Simulating a Perceptron on a Quantum Computer. Physics Letters A, 379, 660-663.
https://doi.org/10.1016/j.physleta.2014.11.061
[4]  Schuld, M., Sinayskiy, I. and Petruccione, F. (2014) Quantum Computing for Pattern Classification. In: Palm, D.-N. and Park, S.-B., Eds., Pacific Rim International Conference on Artificial Intelligence, Spring International Publishing, Switzerland, 208-220.
https://doi.org/10.1007/978-3-319-13560-1_17
[5]  Schuld, M., Sinayskiy, I. and Petruccione, F. (2014) The Quest for a Quantum Neural Network. Quantum Information Processing, 13, 2567-2586.
https://doi.org/10.1007/s11128-014-0809-8
[6]  Schuld, M., Sinayskiy, I. and Petruccione, F. (2014) Quantum Walks on Graphs Representing the Firing Patterns of a Quantum Neural Network. Physical Review A, 89, Article ID: 032333.
https://doi.org/10.1103/PhysRevA.89.032333
[7]  Cai, X.-D., Wu, D., Su, Z.-E., Chen, M.-C., Wang, X.-L., Li, L., Liu, N.-L., Lu, C.-Y. and Pan, J.-W. (2015) Entanglement-Based Machine Learning on a Quantum Computer. Physical Review Letters, 114, Article ID: 110504.
https://doi.org/10.1103/PhysRevLett.114.110504
[8]  Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N. and Lloyd, S. (2017) Quantum Machine Learning. Nature, 549, 195-202.
https://doi.org/10.1038/nature23474
[9]  Dunjko, V., Taylor, J.M. and Briegel, H.J. (2016) Quantum-Enhanced Machine Learning. Physical Review Letters, 117, Article ID: 130501.
https://doi.org/10.1103/PhysRevLett.117.130501
[10]  Sutton, R.S. and Barto, A.G. (1998) Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA.
[11]  Ganger, M., Duryea, E. and Hu, W. (2016) Double Sarsa and Double Expected Sarsa with Shallow and Deep Learning. Journal of Data Analysis and Information Processing, 4, 159-176.
https://doi.org/10.4236/jdaip.2016.44014
[12]  Duryea, E., Ganger, M. and Hu, W. (2016) Exploring Deep Reinforcement Learning with Multi Q-Learning. Intelligent Control and Automation, 7, 129-144.
[13]  Briegel, H.J. and De las Cuevas, G. (2012) Projective Simulation for Artificial Intelligence. Scientific Reports, 2, 400.
[14]  Paparo, G.D., Dunjko, V., Makmal, A., Martin-Delgado, M.A. and Briegel, H.J. (2014) Quantum Speedup for Active Learning Agents. Physical Review X, 4, Article ID: 031002.
https://doi.org/10.1103/PhysRevX.4.031002
[15]  IBM. Quantum Experience.
http://www.research.ibm.com/quantum
[16]  Hu, W. (2018) Empirical Analysis of a Quantum Classifier Implemented on IBM’s 5Q Quantum Computer. Journal of Quantum Information Science, 8, 1-11.
[17]  Alsina, D. and Latorre, J.I. (2016) Experimental Test of Mermin Inequalities on a Five-Qubit Quantum Computer. Physical Review A, 94, Article ID: 012314.
https://doi.org/10.1103/PhysRevA.94.012314
[18]  Berta, M., Wehner, S. and Wilde, M.M. (2016) Entropic Uncertainty and Measurement Reversibility. New Journal of Physics, 18, Article ID: 073004.
https://doi.org/10.1088/1367-2630/18/7/073004
[19]  Nielsen, M.A. and Chuang, I.L. (2010) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511976667
[20]  Sriarunothai, T., Wolk, S., Giri, G.S., Friis, N., Dunjko, V., Briegel, H.J. and Wunderlich, C. (2017) Speeding-Up the Decision Making of a Learning Agent using an Ion Trap Quantum Processor.
https://arxiv.org/abs/1709.01366
[21]  Grover, L.K. (1996) A Framework for Fast Quantum Mechanical Algorithms. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, ACM, New York, 212-219.
https://doi.org/10.1145/237814.237866

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133