All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Violation of Cluster Property in Quantum Antiferromagnet

DOI: 10.4236/wjcmp.2018.81001, PP. 1-22

Keywords: Cluster Property, Entanglement, Quantum Antiferromagnet, Spontaneous Symmetry Breaking

Full-Text   Cite this paper   Add to My Lib

Abstract:

The cluster property is one of fundamental properties in physics. This property means that there are no relations between two events that are sufficiently separated. Because the cluster property is directly connected with entanglement in quantum field theory and in many-body systems, theoretical and experimental progress on entanglement stimulates us to study this property deeply. In this paper we investigate the cluster property in the spin 1/2 XXZ antiferromagnet on the square lattice with an explicitly symmetry breaking interaction of strength g. In this model spontaneous symmetry breaking occurs when the lattice size N is infinitely large. On the other hand, we have to make g zero in order to obtain quantities in the XXZ model with no symmetry breaking interaction. Since some results depend on the sequence of limit operations — \"\"?and \"\", it is difficult to draw a clear conclusion in these limits. Therefore we study the model with finite g on the finite lattice, whose size N is supposed to be 1020, for our quantitative calculations. Then we can obtain the concrete ground state. In order to study the cluster property we calculate the spin correlation function. It is known that the function due to Nambu-Goldstone mode (gapless mode), which is calculated using linear spin wave theory, satisfies this property. In this paper we show that almost degenerate states also induce the spin correlation. We assume that the spin correlation function in measurements is a sum of the function due to Nambu-Goldstone mode and one due to these degenerate states. Then we examine whether the additional correlation function violates the cluster property or not. Our conclusion is that this function is finite at any distance, which means the violation of the cluster property, and it is of order of \"\" . Except for the case of extremely small g, this violation is the fine effect. Therefore the correlation function due to the degenerate states can be observed only when it is larger than the spin correlation function due to Nambu-Goldstone mode. We show that g required for this condition depends on the distance between positions of two spin operators.

References

[1]  Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K. (2009) Quantum Entanglement. Review of Modern Physics, 81, 865.
https://doi.org/10.1103/RevModPhys.81.865
[2]  Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University, Cambridge.
[3]  Guhne, O. and Toth, G. (2009) Entanglement Detection. Physics Reports, 474, 1-75.
https://doi.org/10.1016/j.physrep.2009.02.004
[4]  Ekert, A., Alves, C., Oi, D., Horodecki, M., Horodecki, P. and Kwek, L. (2002) Direct Estimations of Linear and Nonlinear Functionals of a Quantum State. Physical Review Letters, 88, 217901.
https://doi.org/10.1103/PhysRevLett.88.217901
[5]  Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N. and Adesso, G. (2016) Robustness of Coherence: An Operational and Observable Measure of Quantum Coherence. Physical Review Letters, 116, 150502.
https://doi.org/10.1103/PhysRevLett.116.150502
[6]  Van Raamsdonk, M. (2010) Building up Spacetime with Quantum Entanglement. General Relativity and Gravitation, 42, 2323-2329.
https://doi.org/10.1007/s10714-010-1034-0
[7]  Calabrese, P. and Cardy, J. (2009) Entanglement Entropy and Conformal Field Theory. Journal Physics A, 42, 504005.
https://doi.org/10.1088/1751-8113/42/50/504005
[8]  Nishioka, T., Ryu, S. and Takayanagi, T. (2009) Holographic Entanglement Entropy: An Overview. Journal Physics A, 42, 504008.
https://doi.org/10.1088/1751-8113/42/50/504008
[9]  Anderson, P.W. (1984) Basic Notions of Condensed Matter Physics. Benjamin/Cummings, Menlo Park, CA.
[10]  Weinberg, S. (1995) The Quantum Theory of Fields. Vol. 2, Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9781139644167
[11]  Amico, L., Fazio, R., Osterloh, A. and Vedral, V. (2008) Entanglement in Many-Body Systems. Review of Modern Physics, 80, 517.
https://doi.org/10.1103/RevModPhys.80.517
[12]  Islam, R., Ma, R., Preiss, P.M., Tai, M.E., Lukin, A., Rispoli, M. and Greiner, M. (2015) Measuring Entanglement Entropy in a Quantum Many-Body System. Nature, 528, 77.
https://doi.org/10.1038/nature15750
[13]  Cianciaruso, M., Ferro, L., Giampaolo, S.M., Zonzo, G. and Illuminati, F. (2014) Classical Nature of Ordered Phases: Origin of Spontaneous Symmetry Breaking.
https://arxiv.org/abs/1408.1412
[14]  Shi, Y. (2003) Quantum Disentanglement in Long-Range Orders and Spontaneous Symmetry Breaking. Physics Letters A, 309, 254-261.
https://doi.org/10.1016/S0375-9601(03)00128-2
[15]  Heaney, L., Anders, J., Kaszlikowski, D. and Vedral, V. (2007) Spatial Entanglement From Off-Diagonal Long-Range Order in a Bose-Einstein Condensate. Physics Review A, 76, 053605.
https://doi.org/10.1103/PhysRevA.76.053605
[16]  Hamma, A., Giampaolo, S. and Illuminati, F. (2016) Mutual Information and Spontaneous Symmetry Breaking. Physics Review A, 93, 012303.
https://doi.org/10.1103/PhysRevA.93.012303
[17]  Strocchi, F. (2008) Symmetry Breaking. Lecture Note Physics 732. Springer, Berlin.
[18]  Strocchi, F. (1978) Local and Covariant Gauge Quantum Field Theories. Cluster Property, Superselection Rules, and the Infrared Problem. Physics Review D, 17, 2010-2021.
https://doi.org/10.1103/PhysRevD.17.2010
[19]  Lowdon, P. (2016) Conditions on the Violation of the Cluster Decomposition Property in QCD. Journal of Mathematical Physics, 57, 102302.
https://doi.org/10.1063/1.4965715
[20]  Xu, S. and Fan, S. (2017) Generalized Cluster Decomposition Principle Illustrated in Waveguide Quantum Electrodynamics. Physics Review A, 95, 063809.
https://doi.org/10.1103/PhysRevA.95.063809
[21]  Froehlich, J. and Rodriguez P. (2017) On Cluster Properties of Classical Ferromagnets in an External Magnetic Field. Journal of Statistical Physics, 166, 828-840.
https://doi.org/10.1007/s10955-016-1556-2
[22]  Shimizu, A. and Miyadera, T. (2002) Cluster Property and Robustness of Ground States of Interacting Many Bosons. Journal of the Physical Society of Japan, 71, 56-59.
https://doi.org/10.1143/JPSJ.71.56
[23]  Shimizu, A. and Miyadera, T. (2002) Stability of Quantum States of Finite Macroscopic Systems against Classical Noises, Perturbations from Environments, and Local Measurements. Physical Review Letters, 89, 270403.
https://doi.org/10.1103/PhysRevLett.89.270403
[24]  Richter, J., Schulenburg, J. and Honecker, A. (2004) Quantum Magnetism. In: Schollwock, U., Richter, J., Farnell, D.J.J. and Bishop, R.F., Eds., Lecture Note in Physics, Volume 645, Springer-Verlag, Berlin Heidelberg, 85-153.
[25]  Auerbach, A. (1994) Interacting Electrons and Quantum Magnetism. Springer-Verlag, Berlin Heidelberg.
https://doi.org/10.1007/978-1-4612-0869-3
[26]  Hatano, N. and Suzuki, M. (1993) Quantum Monte Carlo Methods in Condensed Matter Physics. World Scientific, Singapore, 13-47.
https://doi.org/10.1142/9789814503815_0002
[27]  De Raedt, H. and von der Linden, W. (1995) The Monte Carlo Method in Condensed Matter Physics. Springer-Verlag, Berlin Heidelberg, 249-284.
[28]  Manousakis, E. (1991) The Spin-1/2 Heisenberg Antiferromagnet on a Square Lattice and Its Application to the Cuprous Oxides. Review Modern of Physics, 63, 1.
https://doi.org/10.1103/RevModPhys.63.1
[29]  Landee, C. and Turnbull, M. (2013) Recent Developments in Low-Dimensional Copper(II) Molecular Magnets. European Journal of Inorganic Chemistry, 2013, 2266-2285.
https://doi.org/10.1002/ejic.201300133
[30]  Birgeneau, R.J., Greven, M., Kastner, M.A., Lee, Y. Wells, B.O., Endoh, Y., Yamada, K. and Shirane, G. (1999) Instantaneous Spin Correlations in La2CuO4. Physical Review B, 59, 13788.
https://doi.org/10.1103/PhysRevB.59.13788
[31]  Tseng, K., Keller, T., Walters, A., Birgeneau, R. and Keimer, B. (2016) Neutron Spin-Echo Study of the Critical Dynamics of Spin-5/2 Antiferromagnets in Two and Three Dimensions. Physics Review B, 94, 014424.
https://doi.org/10.1103/PhysRevB.94.014424
[32]  Bossoni, L., Carretta, P., Nath, R., Moscardini, M., Baenitz, M. and Geibel, C. (2011) NMR and μSR Study of Spin Correlations in SrZnVo(PO4)2: An S = 1/2 Frustrated Magnet on a Square Lattice. Physics Review B, 83, 014412.
https://doi.org/10.1103/PhysRevB.83.014412
[33]  Greven, M., Birgeneau. R.J., Endoh, Y., Kastner, M., Keimer, B., Matsuda, M. Shirane, G. and Thurston, T. (1995) Spin Correlations in the 2D Heisenberg Antiferromagnet Sr2CuO2Cl2: Neutron Scattering, Monte Carlo Simulation, and Theory. Physics Review Letters, 72, 1096-1099.
https://doi.org/10.1103/PhysRevLett.72.1096
[34]  Greven, M., Birgeneau. R.J., Endoh, Y., Kastner. M., Matsuda, M. and Shirane, G. (1995) Neutron Scattering Study of the Two-Dimensional Spin S = 1/2 Square-Lattice Heisenberg Antiferromagnet Sr2CuO2Cl2. Zeitschrift für Physik B Condensed Matter, 96, 465-477.
https://doi.org/10.1007/BF01313844
[35]  Xiao, F., Woodward, F., Landee, C., Turnbull, M., Mielke, C., Harrison, N., Lancaster, T., Blundell, S., Baker, P., Babkevich, P. and Pratt, F. (2009) Two-Dimensional XY Behavior Observed in Quasi-Two-Dimensional Quantum Heisenberg Antiferromagnets. Physics Review B, 79, 134412.
https://doi.org/10.1103/PhysRevB.79.134412

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413