全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lignin-Polyurethane Based Biodegradable Foam

DOI: 10.4236/ojpchem.2018.81001, PP. 1-10

Keywords: Lignin, Polyurethane, Foam, Biodegradable, Polyol

Full-Text   Cite this paper   Add to My Lib

Abstract:

Natural sources like starch and lignin used during manufacturing of polyurethane (PU) foam have been used extensively from last decades and replaced petro-chemical based PU foam due to their lower environmental impact, easy availability, low cost and biodegradability. Bio-renewable sources, such as lignin which is an abundant, underutilized component of cellulosic biomass, constitute a rich source of polyol which are being considered as polyol for the production of “eco-friendly and bio-degradable” PU foam. Lignin was mainly used for production of high fungal degradable polyurethane foams, followed by elastomers as well as wood adhesives. This review paper will focus on the progress of research in lignin based polyurethane materials for foam application.

References

[1]  Huo, S.-P., Nie, M.-C., Kong, Z.-W., Wu, G.-M. and Chen, J. (2012) Crosslinking Kinetics of the Formation of Lignin-Aminated Polyol-Based Polyurethane Foam. Journal of Applied Polymer Science, 125, 152-157.
https://doi.org/10.1002/app.35401
[2]  Daniel, K. and Vahid, S. (1991) Handbook of Polymeric Foams and Foam Technology. Oxford University Press, New York.
[3]  Neff, R.A. and Macosko, C.W. (1996) Simultaneous Measurement of Viscoelastic Changes and Cell Opening during Processing of Flexible Polyurethane Foam. Rheologica Acta, 35, 656-666.
https://doi.org/10.1007/BF00396514
[4]  Yasunaga, K., Neff, R.A. and Zhang, X.D. (1996) Study of Cell Opening in Flexible Polyurethane Foam. Journal of Cellular Plastics, 32, 427-448.
https://doi.org/10.1177/0021955X9603200502
[5]  Gandini, A. and Belgacem, N.M. (1998) Recent Advances in the Elaboration of Polymeric Materials Derived from Biomass Components. Polymer International, 47, 267-276.
https://doi.org/10.1002/(SICI)1097-0126(199811)47:3<267::AID-PI9>3.0.CO;2-X
[6]  Gandin, A., Belgacem, N.M., Guo, Z.X. and Montanari, S. (2002) Lignins as Macromonomers for Polyesters and Polyurethanes. In: Hu, T.Q., Ed., Chemical Modification, Properties, and Usage of Lignin, Academic/Plenum, New York, 57-80.
https://doi.org/10.1007/978-1-4615-0643-0_4
[7]  Hatakeyama, H. (2002) Polyurethane Containing Lingin. In: Hu, T.Q., Ed., Chemical Modification, Properties and Usage of Lignin, Academic/Plenum, New York, 41-56.
https://doi.org/10.1007/978-1-4615-0643-0_3
[8]  Hatakeyama, H. and Hatakeyama, T. (2010) Lignin Structure, Properties and Applications. In: Abe, A., Dusek, K. and Kobayashi, S., Eds., Biopolymers, Vol. 232. Advances in Polymer Science, Springer, New York, 1-63.
[9]  Sarkanen, K.V. and Ludwig, C.H. (1971) Lignins, Occurrence, Formation, Structure and Reactions. Wiley-Interscience, New York.
[10]  Lin, S.Y. and Dence, C.W., Eds. (1992) Methods in Lignin Chemistry. Springer Series in Wood Science. Springer, Berlin, Heidelberg, 527-548.
https://doi.org/10.1007/978-3-642-74065-7
[11]  Hu, T.Q. (2008) Characterization of Lignocellulosic Materials. Blackwell, Oxford.
https://doi.org/10.1002/9781444305425
[12]  Hatakeyama, H., et al. (2013) Glass Transition Temperature of Polyurethane Foams Derived from Lignin by Controlled Reaction Rate. Journal of Thermal Analysis and Calorimetry, 114, 1075-1082.
https://doi.org/10.1007/s10973-013-3132-1
[13]  Hatakeyama, H., Tsujimoto, Y., Ja. Zarubin, M., Krutov, S.M. and Hatakeyama, T. (2010) Thermal Decomposition and Glass Transition of Industrial Hydrolysis Lignin. Journal of Thermal Analysis and Calorimetry, 101, 289-295.
https://doi.org/10.1007/s10973-010-0698-8
[14]  Cateto, C.A.B. (2008) Lignin-Based Polyurethanes, Characterisation, Synthesis and Applications. Dissertation, Universidade do Porto (FEUP), Porto.
[15]  Gadhave, R.V., Mahanwar, A. and Gadekar, T. (2017) Bio-Renewable Sources for Synthesis of Ecofriendly Polyurethane Adhesives—Review. Open Journal of Polymer Chemistry, 7, 57-75.
https://doi.org/10.4236/ojpchem.2017.74005
[16]  Sarkanen, K.V. and Ludwig, C.H. (1971) Lignins, Occurrence, Formation, Structure and Reactions. John Wiley & Sons, Inc., New York.
[17]  Wang, H., Ni, Y., Jahan, M.S., Liu, Z. and Schafer, T. (2011) Stability of Cross-Linked Acetic Acid Lignin-Containing Polyurethane. Journal of Thermal Analysis and Calorimetry, 103, 293-302.
https://doi.org/10.1007/s10973-010-1052-x
[18]  Duval, A. and Lawoko, M. (2014) A Review on Lignin-Based Polymeric, Micro- and Nano-Structured Materials. Reactive and Functional Polymers, 85, 78-96.
https://doi.org/10.1016/j.reactfunctpolym.2014.09.017
[19]  Kandula, M., Schwenke, T., Friebel, S. and Salthammer, T. (2015) Effect of Ball Milling on Lignin Polyesterification with ε-Caprolactone. Holzforschung, 69, 297-302.
https://doi.org/10.1515/hf-2014-0053
[20]  Braun, J.L., Holtman, K.M. and Kadla, J.F. (2005) Lignin-Based Carbon Fibers, Oxidative Thermostabilization of Kraft Lignin. Carbon, 43, 385-394.
https://doi.org/10.1016/j.carbon.2004.09.027
[21]  Norberg, I., Nordström, Y., Drougge, R., Gellerstedt, G. and Sjöholm, E. (2013) A New Method for Stabilizing Softwood Kraft Lignin Fibers for Carbon Fiber Production. Journal of Applied Polymer Science, 128, 3824-3830.
https://doi.org/10.1002/app.38588
[22]  Lora, J. (2008) Industrial Commercial Lignins: Sources, Properties and Applications. In: Belgacem, M.N. and Gandini, A., Eds., Monomers, Polymers and Composites from Renewable Resources, Elsevier, Amsterdam, Chapter 10, 225-241.
[23]  Gordobil, O., Delucis, R., Egüés, I. and Labidi, J. (2015) Kraft Lignin as Filler in PLA to Improve Ductility and Thermal Properties. Industrial Crops and Products, 72, 46-53.
https://doi.org/10.1016/j.indcrop.2015.01.055
[24]  Schorr, D., Diouf, P.N. and Stevanovic, T. (2014) Evaluation of Industrial Lignins for Biocomposites Production. Industrial Crops and Products, 52, 65-73.
https://doi.org/10.1016/j.indcrop.2013.10.014
[25]  Spiridon, I., Leluk, K., Resmerita, A.M. and Darie, R.N. (2015) Evaluation of PLA-Lignin Bioplastics Properties before and after Accelerated Weathering. Composites Part B: Engineering, 69, 342-349.
https://doi.org/10.1016/j.compositesb.2014.10.006
[26]  Yang, L., Wang, X., Cui, Y., et al. (2014) Modification of Renewable Resources—Lignin—By Three Chemical Methods and Its Applications to Polyurethane Foams. Polymers for Advanced Technologies, 25, 1089-1098.
https://doi.org/10.1002/pat.3356
[27]  Calvo-Correas, T., Gabilondo, N., Alonso-Varona, A., Palomares, T., Corcuera, M.A. and Eceiza, A. (2016) Shape-Memory Properties of Crosslinked Biobased Polyurethanes. European Polymer Journal, 78, 253-263.
https://doi.org/10.1016/j.eurpolymj.2016.03.030
[28]  Luo, X., Mohanty, A. and Misra, M. (2013) Lignin as a Reactive Reinforcing Filler for Water-Blown Rigid Biofoam Composites from Soy Oil-Based Polyurethane. Industrial Crops and Products, 47, 13-19.
https://doi.org/10.1016/j.indcrop.2013.01.040
[29]  Cheradame, H., Detoisien, M., Gandini, A., Pla, F. and Roux, G. (1989) Polyurethane from Kraft Lignin. Polymer International, 21, 269-275.
https://doi.org/10.1002/pi.4980210314
[30]  García, A., Erdocia, X., González, M.A. and Labidi, J. (2012) Effect of Ultrasound Treatment on the Physicochemical Properties of Alkaline Lignin. Chemical Engineering and Processing: Process Intensification, 62, 150-158. https://doi.org/10.1016/j.cep.2012.07.011
[31]  Hatakeyama, H., Kosugi, R. and Hatakeyama, T. (2008) Thermal Properties of Lignin- and Molassesbased Polyurethane Foams. Journal of Thermal Analysis and Calorimetry, 92, 419-424.
https://doi.org/10.1007/s10973-007-8963-1
[32]  De Oliveira, F.D., Ramires, E.C., Frollini, E. and Belgacem, M.N. (2015) Lignopolyurethanic Materials Based on Oxypropylated Sodium Lignosulfonate and Castor Oil Blends. Industrial Crops and Products, 72, 77-86.
https://doi.org/10.1016/j.indcrop.2015.01.023
[33]  Cinelli, P., Anguillesi, I. and Lazzeri, A. (2013) Green Synthesis of Flexible Polyurethane Foams from Liquefied Lignin. European Polymer Journal, 49, 1174-1184.
https://doi.org/10.1016/j.eurpolymj.2013.04.005
[34]  Yeganeh, H. and Mehdizadeh, M.R. (2004) Synthesis and Properties of Isocyanate Curable Millable Polyurethane Elastomers Based on Castor Oil as a Renewable Resource Polyol. European Polymer Journal, 40, 1233-1238.
https://doi.org/10.1016/j.eurpolymj.2003.12.013
[35]  Nada, A.-A.M.A., Yousef, M.A., Shaffei, K.A. and Salah, A.M. (1998) Infrared Spectroscopy of Some Treated Lignins. Polymer Degradation and Stability, 62, 157-163.
https://doi.org/10.1016/S0141-3910(97)00273-5
[36]  Zhang, C., Wu, H. and Kessler, M.R. (2015) High Bio-Content Poly Urethane Composites with Urethane Modified Lignin as Filler. Polymer, 69, 52-57.
https://doi.org/10.1016/j.polymer.2015.05.046
[37]  Mohamed, H.A., Badran, B.M., Rabie, A.M. and Morsi, S.M.M. (2014) Synthesis and Characterization of Aqueous (Poly Urethane/Aromatic Polyamide Sulfone) Copolymer Dispersions from Castor Oil. Progress in Organic Coatings, 77, 965-974.
https://doi.org/10.1016/j.porgcoat.2014.01.026
[38]  Amaral, J.S., Sepulveda, M., Cateto, C.A., Farnandes, I.P., Rodrigues, A.E., Belgacem, M.N. and Barreiro, M.F. (2012) Fungal Degradation of Lignin-Based Rigid Polyurethane Foams. Polymer Degradation and Stability, 97, 2069-2076.
https://doi.org/10.1016/j.polymdegradstab.2012.03.037
[39]  Ignat, L., Ignat, M., Ciobanu, C., Doroftei, F. and Popa, V.I. (2011) Effects of Flax Lignin Addition on Enzymatic Oxidation of Poly(Ethylene Adipate) Urethanes. Industrial Crops and Products, 34, 1017e28.
[40]  Zhu, H.B., Peng, Z.M., Chen, Y.M., Li, G.Y., Wang, L., Tang, Y., Pang, R., Ul Haq Khan, Z. and Wan, P.Y. (2014) Preparation and Characterization of Flame Retardant Polyurethane Foams Containing Phosphorus-Nitrogen-Functionalized Lignin. RSC Advances, 4, 55271-55279.
https://doi.org/10.1039/C4RA08429B
[41]  Tay, G.S., Ong, L.N. and Rozman, H.D. (2012) Mechanical Properties and Fire Retardant Behavior of Polyurethane Foam Reinforced with Oil Palm Empty Fruit Bunch. Journal of Applied Polymer Science, 125, 158-164.
https://doi.org/10.1002/app.35568
[42]  Draye, A.C. and Tondeur, J.J. (1999) Temperature Effect on Alcohol-Isocyanate Kinetics. Reaction Kinetics and Catalysis Letters, 66, 319-324.
https://doi.org/10.1007/BF02475807
[43]  Thirumal, M., Khastgir, D., Singha, N.K., Manjunath, B.S. and Naik, Y.P. (2008) Effect of Foam Density on the Properties of Water Blown Rigid Polyurethane Foam. Journal of Applied Polymer Science, 108, 1810-1817.
[44]  Amaral, J.S., Sepúlveda, M. and Cateto, C.A. (2012) Fungal Degradation of Lignin-Based Rigid Polyurethane Foams. Polymer Degradation and Stability, 97, 2069-2076.
https://doi.org/10.1016/j.polymdegradstab.2012.03.037
[45]  Huo, S.P., Nie, M.C. and Kong, Z.W. (2012) Crosslinking Kinetics of the Formation of Lignin-Aminated Polyol-Based Polyurethane Foam. Journal of Applied Polymer Science, 125, 152-157.
https://doi.org/10.1002/app.35401
[46]  Landrock, A.H. (1995) Handbook of Plastic Foams: Types, Properties, Manufacture, and Applications. Noyes Publications, Park Ridge, NJ.
[47]  Hirschler, M.M. (2008) Polyurethane Foam and Fire Safety. Polymers for Advanced Technologies, 19, 521-529.
https://doi.org/10.1002/pat.1092
[48]  Xu, Z.B., Kong, W.W., Zhou, M.X. and Peng, M. (2010) Effect of Surface Modification of Montmorillonite on the Properties of Rigid Polyurethane Foam Composites. Chinese Journal of Polymer Science, 28, 615-624.
https://doi.org/10.1007/s10118-010-9111-0
[49]  Stewart, D. (2008) Lignin as a Base Material for Materials Applications, Chemistry, Application and Economics. Industrial Crops and Products, 27, 202-207.
https://doi.org/10.1016/j.indcrop.2007.07.008
[50]  Doherty, W., Halley, P., Edye, L., Rogers, D., Cardona, F., Park, Y. and Woo, T. (2007) Studies on Polymers and Composites from Lignin and Fiber Derived from Sugar Cane. Polymers for Advanced Technologies, 18, 673-678.
https://doi.org/10.1002/pat.879
[51]  Yoshida, H., Morck, R., Kringstad, K.P. and Hatakeyama, H. (1987) Kraft Lignin in Polyurethanes I. Mechanical Properties of Polyurethanes from a Kraft Lignin-Polyether Triol-Polymeric MDI System. Journal of Applied Polymer Science, 34, 1187-1198.
https://doi.org/10.1002/app.1987.070340326
[52]  Liu, Z.M., Yu, F., Fang, G.Z. and Yang, H.J. (2009) Performance Characterization of Rigid Polyurethane Foam with Refined Alkali Lignin and Modified Alkali Lignin. Journal of Forestry Research, 20, 161-164.
https://doi.org/10.1007/s11676-009-0028-9
[53]  Tavares, L.B., Boas, C.V., Schleder, G.R., Nacas, A.M., Rosa, D.S. and Santos, D.J. (2016) Bio-Based Polyurethane Prepared from Kraft Lignin and Modified Castor Oil. eXPRESS Polymer Letters, 10, 927-940.
https://doi.org/10.3144/expresspolymlett.2016.86
[54]  Daemi, H., Barikani, M. and Barmar, M. (2013) Highly Stretchable Nanoalginate Based Polyurethane Elastomers. Carbohydrate Polymers, 95, 630.
[55]  Zhang, Q., Zhang, G., Xu, J., et al. (2015) Recent Advances on Ligin-Derived Polyurethane Polymers. Reviews on Advanced Materials Science, 40, 146-154.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133