全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Geometric Proof of Fermat’s Little Theorem

DOI: 10.4236/apm.2018.81004, PP. 41-44

Keywords: Fermat, Carmichael Number, Group, Permutation, Burnside’s Lemma, Action, Invariant Set, Orbit, Stabilizer, Coloring, Pattern, Prime, Regular Polygon, Cyclic Group

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present an intuitively satisfying geometric proof of Fermat's result for positive integers that \"\" for prime moduli p, provided p does not divide a. This is known as Fermat’s Little Theorem. The proof is novel in using the idea of colorings applied to regular polygons to establish a number-theoretic result. A lemma traditionally, if ambiguously, attributed to Burnside provides a critical enumeration step.

References

[1]  Dummitt, D.S. and Foote, R.M. (2004) Abstract Algebra. 3rd Edition, John Wiley & Sons, Inc.
[2]  Gallian, J.A. (2010) Contemporary Abstract Algebra. 7th Edition, Brooks-Cole.
[3]  Rotman, J. (1995) An Introduction to the Theory of Groups. Springer-Verlag.
https://doi.org/10.1007/978-1-4612-4176-8
[4]  Burnside, W. (1897) Theory of Groups of Finite Order. Cambridge University Press, Cambridge.
[5]  Frobenius, F.G. (1887) über die Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodul. Crelle’s Journal, 288.
[6]  Neumann, P.M. (1979) A Lemma That Is Not Burnside’s. The Mathematical Scientist, 4, 133-141.
[7]  Rosyida, I., Peng, J., Chen, L., Widodo, W., Indrati, Ch.R. and Sugeng, K.A. (2016) An Uncertain Chromatic Number of an Uncertain Graph Based on Alpha-Cut Coloring. Fuzzy Optimization and Decision Making, 1-21.
https://doi.org/10.1007/s10700-016-9260-x
[8]  Chen, L., Peng, J. and Ralescu, D.A. (2017) Uncertain Vertex Coloring Problem. Soft Computing.
https://doi.org/10.1007/s00500-017-2861-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133