With an analysis of zonal wind observations over 40 years, Salby and Callaghan [1] showed that the Quasi-biennial Oscillation (QBO) at 20 km is modulated by 11-year solar cycle (SC) variations from about 12 to 20 m/s (Figure 2). The observations are reproduced qualitatively in a study with the 3D Numerical Spectral Model, which shows that the SC effect of the stratospheric QBO is produced by dynamical downward coupling originating in the mesosphere. In this modeling study, the SC period is taken to be 10 years, and a realistic heat source is applied varying exponentially with altitude: 0.2%, surface; 2%, 50 km; 20%, 100 km and above. The numerical results show that the variable solar radiation in the mesosphere around 65 km generates a hemispheric symmetric Equatorial Annual Oscillation (EAO), which is modulated by relatively large SC variations. Under the influence of wave mean flow interactions, the EAO propagates into the lower atmosphere and is the dynamical source or pacemaker for the large SC modulation of the QBO. The numerical results show that the upward propagating small-scale gravity waves from the troposphere amplify the SC modulations of the QBO and EAO in the stratosphere, part of the SC mechanism. The zonal winds of the equatorial QBO and EAO produce through the meridional circulation measurable SC variations in the temperature of the stratosphere and troposphere at high latitudes. Analysis of NCEP temperature and zonal wind data (1958 to 2006) provides observational evidence of the EAO with SC variations around 11 years.
References
[1]
Salby, M. and Callaghan, P. (2000) Connection between the Solar Cycle and the QBO: The Missing Link. Journal of Climate, 13, 2652-2662. https://doi.org/10.1175/1520-0442(1999)012<2652:CBTSCA>2.0.CO;2
[2]
Holton, J.R. and Tan, H.C. (1980) The Influence of the Equatorial Quasibiennial Oscillation on the Global Circulation, at 50 MB. Journal of the Atmospheric Sciences, 37, 2200-2208. https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2
[3]
Labitzke, K. (1982) On the Inter-Annual Variability of the Middle Stratosphere during Northern Winters. Journal of the Meteorological Society of Japan, 60, 124-139. https://doi.org/10.2151/jmsj1965.60.1_124
[4]
Labitzke, K. (1987) Sunspots, the QBO and Stratospheric Temperature in the North Polar Region. Geophysical Research Letters, 14, 535-537. https://doi.org/10.1029/GL014i005p00535
[5]
Labitzke, K. and Van Loon, H. (1988) Association between the 11-Year Solar Cycle, the QBO and the Atmosphere. Part I: The Troposphere and Stratosphere in the Northern Hemisphere in Winter. Journal of Atmospheric and Terrestrial Physics, 50, 197-206. https://doi.org/10.1016/0021-9169(88)90068-2
[6]
Labitzke, K. and Van Loon, H. (1992) On the Association between the QBO and the Extratropical Stratosphere. Journal of Atmospheric and Terrestrial Physics, 54, 1453-1463. https://doi.org/10.1016/0021-9169(92)90152-B
[7]
Dunkerton, T.J. and Baldwin, M.P. (1992) Modes of Interannual Variability in the Stratosphere. Geophysical Research Letters, 19, 49-51. https://doi.org/10.1029/91GL02869
[8]
Baldwin, M.P. and Dunkerton, T.J. (1998) Biennial, Quasi-Biennial, and Decadal Oscillations of Potential Vorticity in the Northern Stratosphere. Journal of Geophysical Research, 103, 3919-3928. https://doi.org/10.1029/97JD02150
[9]
Matthes, K., Langematz, U., Gray, L., Kodera, K. and Labitzke, K. (2004) Improved 11-Year Solar Signal in the Freie Universitaet Berlin, Climate Middle Atmosphere Model (FUB-CMAM). Journal of Geophysical Research, 109, D06101. https://doi.org/10.1029/2003JD004012
[10]
Palmer, M. and Gray, L. (2005) Modeling the Atmospheric Response to Solar Irradiance Changes Using a GCM with a Realistic QBO. Geophysical Research Letters, 32, L24701. https://doi.org/10.1029/2005GL023809
[11]
Hamilton, K. (2002) On the Quasi-Decadal Modulation of the Stratospheric QBO Period. Journal of Climate, 15, 2562-2565. https://doi.org/10.1175/1520-0442(2002)015<2562:OTQDMO>2.0.CO;2
[12]
Fischer, P. and Tung, K.K. (2008) A Reexamination of the QBO Period Modulation for the Solar Cycle. Journal of Geophysical Research, 113, D07114. https://doi.org/10.1029/2007JD008983
[13]
Mallat, S. (1998) A Wavelet Tour of Signal Processing. Elsevier, New York.
[14]
Salby, M. and Callaghan, P. (2006) Relationship of the Quasi-Biennial Oscillation in the Stratospheric Signature of the Solar Cycle. Journal of Geophysical Research, 111, D06110. https://doi.org/10.1029/2005JD006012
[15]
Frame, T.H. and Gray, L.J. (2010) The 11-Yr Solar Cycle in ERA-40 Data: An Update to 2008. Journal of Climate, 23, 2213-2222. https://doi.org/10.1175/2009JCLI3150.1
[16]
McCormack, J.P. (2003) The Influence of the 11-Year Solar Cycle on the Quasi-Biennial Oscillation. Geophysical Research Letters, 30, Article ID: 2162. https://doi.org/10.1029/2003GL018314
[17]
Cordero, E.C. and Nathan, T.R. (2005) A New Pathway for Communicating the 11-Year Solar Cycle to the QBO. Geophysical Research Letters, 32, L18805. https://doi.org/10.1029/2005GL023696
[18]
Matthes, K., Marsh, D.R., Garcia, R.R., Kinnison, D.E., Sassi, F. and Walters, S. (2010) Role of the QBO in Modulating the Influence of the 11 Year Solar Cycle on the Atmosphere Using Constant Forcings. Journal of Geophysical Research, 115, D18110. https://doi.org/10.1029/2009JD013020
[19]
Kren, A.C., Marsh, D.R., Smith, A.K. and Pilewskie, P. (2014) Examining the Stratospheric Response to the Solar Cycle in a Coupled WACCM Simulation with an Internally Generated QBO. Atmospheric Chemistry and Physics, 14, 4843-4856. https://doi.org/10.5194/acp-14-4843-2014
[20]
Mayr, H.G., Mengel, J.G. and Wolff, C.L. (2005) Wave-Driven Equatorial Annual Oscillation Induced and Modulated by the Solar Cycle. Geophysical Research Letters, 32, L20811. https://doi.org/10.1029/2005GL023090
[21]
Mayr, H.G., Mengel, J.G., Wolff, C.L. and Porter, H. (2006) QBO as Potential Amplifier of Solar Cycle Influence. Geophysical Research Letters, 33, L05812. https://doi.org/10.1029/2005GL025650
[22]
Mayr, H.G., Mengel, J.G., Wolff, C.L., Huang, F.T. and Porter, H.S. (2007) The QBO as Potential Amplifier and Conduit to Lower Altitudes of Solar Cycle Influence. Annales Geophysicae, 25, 1071-1092. https://doi.org/10.5194/angeo-25-1071-2007
[23]
Mayr, H.G., Mengel, J.G., Huang, F.T. and Nash, E.R. (2007) Equatorial Annual Oscillation with QBO-Driven 5-Year Modulation in NCEP Data. Annales Geophysicae, 25, 37-45. https://doi.org/10.5194/angeo-25-37-2007
Mayr, H.G. and Lee, J.N. (2016) Downward Propagating Equatorial Annual Oscillation and QBO Generated Multi-Year Oscillations in Stratospheric NCEP Reanalysis Data. Journal of Atmospheric and Solar-Terrestrial Physics, 138, 1-8. https://doi.org/10.1016/j.jastp.2015.11.016
[26]
Mayr, H.G., Mengel, J.G., Huang, F.T. and Nash, E.R. (2009) Solar Cycle Signatures in the NCEP Equatorial Annual Oscillation. Annales Geophysicae, 27, 3225-3235. https://doi.org/10.5194/angeo-27-3225-2009
[27]
Lindzen, R.S. and Holton, J.R. (1968) A Theory of the Quasi-Biennial Oscillation. Journal of the Atmospheric Sciences, 25, 1095-1107. https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2
[28]
Chan, K.L., Mayr, H.G., Mengel, J.G. and Harris, I. (1994) A “Stratified” Spectral Model for Stable and Convective Atmospheres. Journal of Computational Physics, 113, 165-176. https://doi.org/10.1006/jcph.1994.1128
[29]
Chan, K.L., Mayr, H.G., Mengel, J.G. and Harris, I. (1994) A Spectral Approach for Studying Middle and Upper Atmospheric Phenomena. Journal of Atmospheric and Terrestrial Physics, 56, 1399-1419. https://doi.org/10.1016/0021-9169(94)90077-9
[30]
Mengel, J.G., Mayr, H.G., Chan, K.L., Hines, C.O., Reddy, C.A., Arnold, N.F. and Porter, H.S. (1995) Equatorial Oscillations in the Middle Atmosphere Generated by Small Scale Gravity Waves. Geophysical Research Letters, 22, 3027-3039. https://doi.org/10.1029/95GL03059
[31]
Mayr, H.G., Mengel, J.G., Chan, K.L. and Huang, F.T. (2010) Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Zonal-Mean Variations. Journal of Atmospheric and Terrestrial Physics, 72, 807-828. https://doi.org/10.1016/j.jastp.2010.03.018
[32]
Mayr, H.G., Mengel, J.G., Chan, K.L. and Huang, F.T. (2011) Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves. Journal of Atmospheric and Solar-Terrestrial Physics, 73, 711-730. https://doi.org/10.1016/j.jastp.2011.01.019
[33]
Hines, C.O. (1997) Doppler-Spread Parameterization of Gravity-Wave Momentum Deposition in the Middle Atmosphere, 1, Basic Formulation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 371-386. https://doi.org/10.1016/S1364-6826(96)00079-X
[34]
Hines, C.O. (1997) Doppler-Spread Parameterization of Gravity-Wave Momentum Deposition in the Middle Atmosphere, 2, Broad and Quasi Monochromatic Spectra, and Implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 387-400. https://doi.org/10.1016/S1364-6826(96)00080-6
[35]
Hines, C.O. (2001) Theory of the Eulerian Tail in the Spectra of Atmospheric and Oceanic Internal Gravity Waves. Journal of Fluid Mechanics, 448, 289-313. https://doi.org/10.1017/S0022112001005973
[36]
Hines, C.O. (2002) Nonlinearities and Linearities in Internal Gravity Waves of the Atmosphere and the Oceans. Geophysical & Astrophysical Fluid Dynamics, 96, 1-30. https://doi.org/10.1080/03091920290018826
[37]
Mayr, H.G., Mengel, J.G., Hines, C.O., Chan, K.L., Arnold, N.F., Reddy, C.A. and Porter, H.S. (1997) The Gravity Wave Doppler Spread Theory Applied in a Numerical Spectral Model of the Middle Atmosphere, 1, Model and Global Scale Seasonal Variations. Journal of Geophysical Research, 102, 26077-26092. https://doi.org/10.1029/96JD03213
[38]
Mayr, H.G., Mengel, J.G., Talaat, E.R., Porter, H.S. and Chan, K.L. (2004) Modeling Study of Mesospheric Planetary Waves: Genesis and Characteristics. Annales Geophysicae, 22, 1885-1902. https://doi.org/10.5194/angeo-22-1885-2004
[39]
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.L., Ropelewski, C., Wang, J., Jenne, R. and Joseph, D. (1996) The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 77, 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[40]
Kalnay, E. (2003) Atmospheric Modeling, Data Assimilation, and Predictability. Cambridge University Press, Cambridge.
[41]
Huesmann, A.S. and Hitchman, M.H. (2001) The Stratospheric Quasi-Biennial Oscillation in the NCEP Reanalysis: Climatological Structure. Journal of Geophysical Research, 106, 11,859-11,874. https://doi.org/10.1029/2001JD900031
[42]
Huesmann, A.S. and Hitchman, M.H. (2003) The 1978 Shift in the NCEP Reanalysis Stratospheric Quasi-Biennial Oscillation. Geophysical Research Letters, 30, 1048. https://doi.org/10.1029/2002GL016323
[43]
Kodera, K. (1995) On the Origin and Nature of the Inter-Annual Variability of the Winter Stratospheric Circulation in the Northern Hemisphere. Journal of Geophysical Research, 100, 14077-14088. https://doi.org/10.1029/95JD01172
[44]
Thompson, D.W.J. and Wallace, J.M. (1998) The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields. Geophysical Research Letters, 25, 1297-1300. https://doi.org/10.1029/98GL00950
[45]
Baldwin, M.P. and Dunkerton, T.J. (1999) Propagation of the Arctic Oscillation from the Stratosphere to the Troposphere. Journal of Geophysical Research, 104, 30937-30946. https://doi.org/10.1029/1999JD900445
[46]
Ruzmaikin, A. and Feynman, J. (2002) Solar Influence on a Major Mode of Atmospheric Variability. Journal of Geophysical Research, 107, 4209. https://doi.org/10.1029/2001JD001239
[47]
Lee, J.N. and Hameed, S. (2007) The Northern Hemisphere Annular Mode in Summer: Its Physical Significance and Its Relation to Solar Activity Variations. Journal of Geophysical Research, 112, D15111. https://doi.org/10.1029/2007JD008394
[48]
Lee, J.N. and Hameed, S. and Shindell, D.T. (2008) Northern Annular Mode in Summer and Its Relation to Solar Activity Variations in the GISS Model E. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 730-741. https://doi.org/10.1016/j.jastp.2007.10.012