Problem: Several approaches to analyze survey data have been proposed in the literature. One method that is not popular in survey research methodology is the use of item response theory (IRT). Since accurate methods to make prediction behaviors are based upon observed data, the design model must overcome computation challenges, but also consideration towards calibration and proficiency estimation. The IRT model deems to be offered those latter options. We review that model and apply it to an observational survey data. We then compare the findings with the more popular weighted logistic regression. Method: Apply IRT model to the observed data from 136 sites within the Commonwealth of Virginia over five years collected in a two stage systematic stratified proportional to size sampling plan. Results: A relationship within data is found and is confirmed using the weighted logistic regression model selection. Practical Application: The IRT method may allow simplicity and better fit in the prediction within complex methodology: the model provides tools for survey analysis.
References
[1]
Uniform Criteria for State Observational Surveys of Seat Belt Use, 23 CFR Part 1340 (2011).
[2]
Lohr, S.L. (1999) Sampling: Design and Analysis. Duxbury Press, Pacific Grove, CA.
[3]
Thomas, S.L. and Heck, R.H. (2001) Analysis of Large-Scale Secondary Data in Higher Education Research: Potential Perils Associated with Complex Sampling Designs. Research in Higher Education, 42, 517-540.
https://doi.org/10.1023/A:1011098109834
[4]
Hahs-Vaughn, D.L. (2005) A Primer for Understanding Weights with National Datasets. The Journal of Experimental Education, 73, 221-248.
https://doi.org/10.3200/JEXE.73.3.221-248
[5]
Korn, E.L. and Graubard, B.I. (1995) Examples of Differing Weighted and Unweighted Estimates from a Sample Survey. The American Statistician, 49, 291-295.
[6]
Preusser, D.F., Lund, A.K. and Williams, A.F. (1991) Characteristics of Belted and Unbelted Drivers. Accident Analysis and Prevention, 23, 475-482.
https://doi.org/10.1016/0001-4575(91)90013-U
[7]
Pickrell, T.M. and Ye, T.J. (2009) Traffic Safety Facts (Research Note): Seat Belt Use in 2008—Demographic Results. National Highway Traffic Safety Administration/ Department of Transportation, Washington DC.
[8]
Vivoda, J.M., Eby, D.W. and Kostyniuk, L.P. (2004) Differences in Safety Belt Use by Race. Accident Analysis and Prevention, 36, 1105-1109.
https://doi.org/10.1016/j.aap.2003.04.001
[9]
Eby, D.W., Fordyce, T.A. and Vivoda, J.M. (2002) A Comparison of Safety Belt Use between Commercial and Noncommercial Light-Vehicle Occupants. Accident Analysis and Prevention, 34, 285-291.
https://doi.org/10.1016/S0001-4575(01)00024-0
[10]
Glassbrenner, D. and Ye, J. (2006) Seat Belt Use in 2006—Overall Results. Traffic Safety Facts—Research Note (No. DOT HS 810 677). National Center for Statistics and Analysis, Washington DC.
[11]
Boyle, J.M. and Vanderwolf, P. (2004) 2003 Motor Vehicle Occupant Safety Survey: Volume 2. Safety Belt Report (DOT-HS-809-789). National Highway Traffic Safety Administration, Washington DC.
[12]
Nambisan, S.S. and Vasudevan, V. (2007) Is Seat Belt Usage by Front Seat Passengers Related to Seat Belt Usage by Their Drivers? Journal of Safety Research, 38, 545-555.
https://doi.org/10.1016/j.jsr.2007.06.002
[13]
Shults, R.A. and Beck, L.F. (2012) Self-Reported Seatbelt Use, United States 2002-2010: Does Prevalence Vary by State and Type of Seatbelt Law? Journal of Safety Research, 43, 417-420. https://doi.org/10.1016/j.jsr.2012.10.010
[14]
Molnar, L.J., Eby, D.W., Dasgupta, K., Yang, Y., Nair, V.N. and Pollock, S.M. (2012) Explaining State-to-State Differences in Seat Belt Use: A Multivariate Analysis of Cultural Variables. Accident Analysis and Prevention, 47, 78-86.
https://doi.org/10.1016/j.aap.2012.01.006
[15]
Özkan, T., Puvanachandra, P., Lajunen, T., Hoe, C. and Hyder, A. (2012) The Validity of Self-Reported Seatbelt Use in a Country Where Levels of Use Are Low. Accident Analysis and Prevention, 47, 75-77. https://doi.org/10.1016/j.aap.2012.01.015
[16]
Hardouin, J.B. and Mesbah, M. (2004) Clustering Binary Variables in Subscales Using an Extended Rasch Model and Akaike Information Criterion. Communication in Statistics, Theory and Methods, 33, 1277-1294.
https://doi.org/10.1081/STA-120030149
[17]
Bartolucci, F. (2007) A Class of Multidimensional IRT Models for Testing Unidimensionality and Clustering Items. Psychometrika, 72, 141-157.
https://doi.org/10.1007/s11336-005-1376-9
[18]
Rasch, G. (1961) On General Laws and the Meaning of Measurement in Psychology. Proceedings of the IV Berkeley Symposium on Mathematical Statistics and Probability, 4, 321-333.
[19]
Kaplan, D. and Ferguson, A.J. (1999) On the Utilization of Sample Weights in Latent Variable Models. Structural Equation Modeling: A Multidisciplinary Journal, 6, 305-321. https://doi.org/10.1080/10705519909540138
[20]
Asparouhov, T. (2006) General Multi-Level Modeling with Sampling Weights. Communications in Statistics—Theory and Methods, 35, 439-460.
https://doi.org/10.1080/03610920500476598
[21]
Kleinbaum, D., Kupper, L., Nizam, A. and Rosenberg, E. (2013) Applied Regression Analysis and Other Multivariable Methods. Cengage Learning, Duxbury, Thomson.
[22]
Montgomery, D.C., Peck, E.A. and Vining, G.G. (2012) Introduction to Linear Regression Analysis. 5th Edition, Wiley, Hoboken, New Jersey.
[23]
Illi, S., Depner, M., Genuneit, J., Horak, E., Loss, G., Strunz-Lehner, C. and von Mutius, E. (2012) Protection from Childhood Asthma and Allergy in Alpine Farm Environments—The GABRIEL Advanced Studies. Journal of Allergy and Clinical Immunology, 129, 1470-1477. https://doi.org/10.1016/j.jaci.2012.03.013
[24]
Richards, S.A., Whittingham, M.J. and Stephens, P.A. (2011) Model Selection and Model Averaging in Behavioural Ecology: The Utility of the IT-AIC Framework. Behavioral Ecology and Sociobiology, 65, 77-89.
https://doi.org/10.1007/s00265-010-1035-8
[25]
Samejima, F. (1996) Evaluation of Mathematical Models for Ordered Polychotomous Responses. Behaviormetrika, 23, 17-35. https://doi.org/10.2333/bhmk.23.17
[26]
Mesbah, M. (2010) Statistical Quality of Life. In: Balakrishnan, N., Ed., Methods and Applications of Statistics in Life and Health Sciences, Wiley, New York, 839-864.
https://doi.org/10.1002/0471667196.ess7129
[27]
Beaumont, J.F., Bocci, C. and Haziza, D. (2014) An Adaptive Data Collection Procedure for Call Prioritization. Journal of Official Statistics, 30, 607-621.
https://doi.org/10.2478/jos-2014-0040