Determination of the Population Structure of Fig Genotypes from Algeria and Turkey Using Inter Primer Binding Site-Retrotransposon and Simple Sequence Repeat Markers
In order to identify the variation and estimate the genetic diversity among the fig (Ficus carica L.) genotypes collected from Algeria and Turkey, the genetic relationships between 86 genotypes were investigated using 23 inter primer binding sites (iPBS)-retrotransposon and 16 simple sequence repeat (SSR) primers. A total of 63 polymorphic bands for the iPBS-retrotransposon markers and 25 alleles for the SSR markers were identified with an average of 2.7 and 1.6 per primer, respectively. The average value of polymorphism information content (PIC) for the iPBS markers (0.73) was higher than that for the SSR markers (0.69). Applying the neighbor-joining method to the combined iPBS-retrotransposon and SSR data, the fig genotypes were clustered into two groups. The STRUCTURE software was used to determine the population structure. Among the genotypes studied, two populations (K = 2) were identified indicating a low diversity between the Algerian and Turkish varieties. Both types of markers were able to differentiate all the fig genotypes and were efficient in discriminating the closely related genotypes. Our data also showed that as a universal marker, iPBS-retrotransposon is a useful tool for the molecular characterization of fig genotypes.
References
[1]
Falistocco, E. and Antonielli, L. (2002) Molecular Cytogenetics of Vitis vinifera L. and Ficus carica L.: Location of rDNA sequences. Proceedings of the XLVI Italian Society of Agricultural Genetics, Giardini Naxos, 18-21 September 2002, Poster Abstract 1.19.
[2]
Kislev, M.E., Hartmann, A. and Bar-Yosef, O. (2006) Early Domesticated Fig in the Jordan Valley. Science, 312, 1372-1374. https://doi.org/10.1126/science.1125910
[3]
Stover, E., Aradhya, M., Ferguson, L. and Crisosto, C.H. (2007) The Fig: Overview of an Ancient Fruit. HortScience, 42, 1083-1087.
[4]
Caliskan, O., Polat, A., Celikkol, P. and Bakir, M. (2012) Molecular Characterization of Autochthonous Turkish Fig Accessions. Spanish Journal of Agricultural Research, 10, 130-140. https://doi.org/10.5424/sjar/2012101-094-11
[5]
El-Rayes, R. (1995) The Fig Tree in the Mediterranean Region and in Syria. Options Mediterr, 13, 79-83.
[6]
FAOSTAT (2014). http://www.faostat.org
[7]
Giraldo, E., Lopez-Corrales, M. and Hormaza, J.I. (2008) Optimization of the Management of an Ex Situ Germplasm Bank in Common Fig with SSRs. Journal of the American Society for Horticultural Science, 133, 69-77.
[8]
Khadari, B., Oukabli, A., Ater, M., Mamouni, A., Roger, J. and Kjellberg, F. (2005) Molecular Characterization of Moroccan Fig Germplasm using Intersimple Sequence Repeat and Simple Sequence Repeat Markers to Establish a Reference Collection. Hort Science, 40, 29-32.
[9]
Mars, M., Chatti, K., Saddoud, O., Salhi-Hannachi, A., Trifi, M. and Marrakchi, M. (2008) Fig Cultivation and Genetic Resources in Tunisia an Overview. Acta Hort (ISHS), 798, 27-32. https://doi.org/10.17660/ActaHortic.2008.798.2
[10]
Aradhya, M.K., Stover, E., Velasco, D. and Koehmstedt, A. (2010) Genetic Structure and Differentiation in Cultivated Fig (Ficus carica L.). Genetica, 138, 681-694.
https://doi.org/10.1007/s10709-010-9442-3
[11]
Kalendar, R., Antonius, K., Smykal, P. and Schulman, A.H. (2010) iPBS: A Universal Method for DNA Fingerprinting and Retrotransposon Isolation. Theoretical and Applied Genetics, 121, 1419-1430. https://doi.org/10.1007/s00122-010-1398-2
[12]
Kalendar, R., Flavell, A., Ellis, T., Sjakste, T., Moisy, C. and Schulman, A.H. (2011) Analysis of Plant Diversity with Retrotransposon-Based Molecular Markers. Heredity, 106, 520-530. https://doi.org/10.1038/hdy.2010.93
[13]
Smykal, P., Bacová-Kerteszová, N., Kalendar, R., Corander, J., Schulman, A.H. and Pavelek, M. (2011) Genetic Diversity of Cultivated Flax (Linum usitatissimum L.) Germplasm Assessed by Retrotransposon-Based Markers. Theoretical and Applied Genetics, 122, 1385-1397. https://doi.org/10.1007/s00122-011-1539-2
[14]
Al-Najm, A., Luo, S., Ahmad, N.M. and Trethowan, R. (2016) Molecular Variability and Genetic Relationships of Date Palm (Phoenix dactylifera L.) Cultivars Based on Inter-Primer Binding Site (iPBS) Markers. Australian Journal of Crop Science, 10, 732-740. https://doi.org/10.21475/ajcs.2016.10.05.p7491
[15]
Baránek, M., Meszáros, M., Sochorová, J., Cechová, J. and Raddová, J. (2012) Utility of Retrotransposon-Derived Marker Systems for Differentiation of Presumed Clones of the Apricot Cultivar Velkopavlovická. Scientia Horticulturae, 143, 1-6.
https://doi.org/10.1016/j.scienta.2012.05.022
[16]
Fang-Yong, C. and Ji-Hong, L. (2014) Germplasm Genetic Diversity of Myrica rubra in Zhejiang Province Studied using Inter-Primer Binding Site and Start Codon-Targeted Polymorphism Markers. Scientia Horticulture, 170, 169-175.
https://doi.org/10.1016/j.scienta.2014.03.010
[17]
Guo, D.L., Guo, M.X., Hou, X.G. and Zhang, G.H. (2014) Molecular Diversity Analysis of Grape Varieties Based on iPBS Markers. Biochemical Systematics and Ecology, 52, 27-32. https://doi.org/10.1016/j.bse.2013.10.008
[18]
Mehmood, A., Jaskani, M.J., Ahmad, S. and Ahmad, R. (2013) Evaluation of Genetic Diversity in Open Pollinated Guava by iPBS Primers. Pakistan Journal of Agricultural Sciences, 50, 591-597.
[19]
Raddová, J., Ptácková, H., Cechová, J. and Ondrásek, I. (2013) Genetic Analysis of the Genus Diospyros ssp. using RAPD and iPBS Methods. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 60, 205-216.
https://doi.org/10.11118/actaun201260080205
[20]
Healey, A., Furtado, A., Cooper, T. and Henry, R.J. (2014) Protocol: A Simple Method for Extracting Next-Generation Sequencing Quality Genomic DNA from Recalcitrant Plant Species. Plant Methods, 10, 1.
https://doi.org/10.1186/1746-4811-10-21
[21]
Khadari, B., Hochu, I., Santoni, S. and Kjellberg, F. (2001) Identification and Characterization of Microsatellite Loci in the Common Fig (Ficus carica L.) and Representative Species of the Genus Ficus. Molecular Ecology Notes, 1, 191-193.
https://doi.org/10.1046/j.1471-8278.2001.00072.x
[22]
Giraldo, E., Viruel, M., López-Corrales, M. and Hormaza, J. (2005) Characterisation and Cross-Species Transferability of Microsatellites in the Common Fig (Ficus carica L.). The Journal of Horticultural Science and Biotechnology, 80, 217-224.
https://doi.org/10.1080/14620316.2005.11511920
[23]
Zavodna, M., Arens, P., Van Dijk, P.J. and Vosman, B. (2005) Development and Characterization of Microsatellite Markers for Two Dioecious Ficus Species. Molecular Ecology Notes, 5, 355-363. https://doi.org/10.1111/j.1471-8286.2005.00924.x
[24]
Ahmed, S., Dawson, D.A., Compton, S.G. and Gilmartin, P.M. (2007) Characterization of Microsatellite Loci in the African Fig Ficus sycomorus L. (Moraceae). Molecular Ecology Notes, 7, 1175-1177. https://doi.org/10.1111/j.1471-8286.2007.01822.x
[25]
Bandelj, D., Javornik, B. and Jakse, J. (2007) Development of Microsatellite Markers in the Common Fig Ficus carica L. Molecular Ecology Notes, 7, 1311-1314.
https://doi.org/10.1111/j.1471-8286.2007.01866.x
[26]
Anderson, J.A., Churchill, G., Autrique, J., Tanksley, S. and Sorrells, M. (1993) Optimizing Parental Selection for Genetic Linkage Maps. Genome, 36, 181-186.
https://doi.org/10.1139/g93-024
[27]
Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. (1980) Construction of a Genetic Linkage Map in Man using Restriction Fragment Length Polymorphisms. American Journal of Human Genetics, 32, 314.
[28]
Rohlf, F.J. (1988) NTSYS-pc Numerical Taxonomy and Multivariate Analysis System. Exeter Publishing Ltd., New York.
[29]
Tamura, K., Stecher, G., Peterson, D., Filipski A. and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
[30]
Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of Population Structure using Multilocus Genotype Data. Genetics, 155, 945-959.
[31]
Evanno, G., Regnaut, S. and Goudet, J. (2005) Detecting the Number of Clusters of Individuals using the Software STRUCTURE: A Simulation Study. Molecular Ecology, 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
[32]
Earl, D. and Von Holdt, B. (2011) Structure Harvester: A Website and Program for Visualizing STRUCTURE Output and Implementing the Evanno Method. Conservation Genetics Resources, 4, 359-361.
[33]
Sneller, C., Miles, J. and Hoyt, J. (1997) Agronomic Performance of Soybean Plant Introductions and Their Genetic Similarity to Elite Lines. Crop Science, 37, 1595-1600. https://doi.org/10.2135/cropsci1997.0011183X003700050032x
[34]
Odong, T., Van Heerwaarden, J., Jansen, J., Van Hintum, T.J. and Van, E.F. (2011) Determination of Genetic Structure of Germplasm Collections: Are Traditional Hierarchical Clustering Methods Appropriate for Molecular Marker Data. Theoretical and Applied Genetics, 123, 195-205. https://doi.org/10.1007/s00122-011-1576-x
[35]
Duan, Y., Guo, D., Guo, L., Wei, D. and Hou, X. (2015) Genetic Diversity Analysis of Tree Peony Germplasm using iPBS Markers. Genetics and Molecular Research, 14, 7556-7566. https://doi.org/10.4238/2015.July.3.31
[36]
De Riek, J., Calsyn, E., Everaert, I., Van Bockstaele, E. and De Loose, M. (2001) AFLP Based Alternatives for the Assessment of Distinctness Uniformity and Stability of Sugar Beet Varieties. Theoretical and Applied Genetics, 103, 1254-1265.
https://doi.org/10.1007/s001220100710
[37]
Wuensch, A. (2009) Cross-Transferable Polymorphic SSR Loci in Prunus Species. Scientia Horticulturae, 120, 348-352. https://doi.org/10.1016/j.scienta.2008.11.012
[38]
Saddoud, O., Salhi-Hannachi, A., Chatti, K., Rhouma, A., Mars, M., Marrakchi, M. and Trifi, M. (2005) Tunisian Fig (Ficus carica L.) Genetic Diversity and Cultivars Identification Mediated by Microsatellites Markers. Fruits, 60, 143-153.
https://doi.org/10.1051/fruits:2005018
[39]
Ikegami, H., Nogata, H., Hirashima, K., Awamura, M. and Nakahara, T. (2009) Analysis of Genetic Diversity among European and Asian Fig Varieties (Ficus carica L.) using ISSR RAPD and SSR Markers. Genetic Resources and Crop Evolution, 56, 201-209. https://doi.org/10.1007/s10722-008-9355-5
[40]
Perez Jiménez, M., López, B., Dorado, G., Pujadas Salvá, A., Guzmán, G. and Hernandez, P. (2012) Analysis of Genetic Diversity of Southern Spain Fig Tree (Ficus carica L.) and Reference Materials as a Tool for Breeding and Conservation. Hereditas, 149, 108-113. https://doi.org/10.1111/j.1601-5223.2012.02154.x
[41]
Ganopoulos, I., Xanthopoulou, A., Molassiotis, A., Karagiannis, E., Moysiadis, T., Katsaris, P., Aravanopoulos, F., Tsaftaris, A., Kalivas, A. and Madesis, P. (2015) Mediterranean Basin Ficus carica L.: From Genetic Diversity and Structure to Authentication of a Protected Designation of Origin Cultivar using Microsatellite Markers. Trees, 29, 1959-1971. https://doi.org/10.1007/s00468-015-1276-2
[42]
Dayanandan, S., Bawa, K.S. and Kesseli, R. (1997) Conservation of Microsatellites among Tropical Trees (Leguminosae). American Journal of Botany, 84, 1658-1663.
https://doi.org/10.2307/2446463
[43]
Do Val, A., Souza, C., Ferreira, E., Salgado, S., Pasqual, M. and Cancado, G. (2013) Evaluation of Genetic Diversity in Fig Accessions by using Microsatellite Markers. Genetics and Molecular Research, 12, 1383-1391.
https://doi.org/10.4238/2013.April.25.9
[44]
Ikten, H., Mutlu, N., Gulsen, O., Kocatas, H. and Aksoy, U. (2010) Elucidating Genetic Relationships Diversity and Population Structure among the Turkish Female Figs. Genetica, 138, 169-177. https://doi.org/10.1007/s10709-009-9400-0
[45]
Achtak, H., Oukabli, A., Ater, M., Santoni, S., Kjellberg, F. and Khadari, B. (2009) Microsatellite Markers as Reliable Tools for Fig Cultivar Identification. Journal of the American Society for Horticultural Science, 134, 624-631.
[46]
Baraket, G., Chatti, K., Saddoud, O., Abdelkarim, A.B., Mars, M., Trifi, M. and Hannachi, A.S. (2011) Comparative Assessment of SSR and AFLP Markers for Evaluation of Genetic Diversity and Conservation of Fig Ficus carica L, Genetic Resources in Tunisia. Plant Molecular Biology Reporter, 29, 171-184.
https://doi.org/10.1007/s11105-010-0217-x
[47]
Baraket, G., Chatti, K., Saddoud, O., Mars, M., Marrakchi, M., Trifi, M. and Salhi-Hannachi, A. (2009) Genetic Analysis of Tunisian Fig (Ficus carica L.) Cultivars using Amplified Fragment Length Polymorphism (AFLP) Markers. Scientia Horticulturae, 120, 487-492. https://doi.org/10.1016/j.scienta.2008.12.012
[48]
Chatti, K., Saddoud, O., Salhi-Hannachi, A., Mars, M., Marrakchi, M. and Trifi, M. (2007) Analysis of Genetic Diversity and Relationships in a Tunisian Fig (Ficus carica) Germplasm Collection by Random Amplified Microsatellite Polymorphisms. Journal of Integrative Plant Biology, 49, 386-391.
https://doi.org/10.1111/j.1744-7909.2007.00396.x
[49]
Salhi-Hannachi, A., Chatti, K., Saddoud, O., Mars, M., Rhouma, A., Marrakchi, M. and Trifi, M. (2006) Genetic Diversity of Different Tunisian Fig (Ficus carica L.) Collections Revealed by RAPD Fingerprints. Hereditas, 143, 15-22.
https://doi.org/10.1111/j.2005.0018-0661.01904.x
[50]
Khadari, B., Grout, C., Santoni, S. and Kjellberg, F. (2005) Contrasted Genetic Diversity and Differentiation among Mediterranean Populations of Ficus carica L.: A Study using mtDNA RFLP. Genetic Resources and Crop Evolution, 52, 97-109.
https://doi.org/10.1007/s10722-005-0290-4
[51]
Andrianoelina, O., Rakotondraoelina, H., Ramamonjisoa, L., Maley, J., Danthu, P. and Bouvet, J.M. (2006) Genetic Diversity of Dalbergia monticola (Fabaceae) an Endangered Tree Species in the Fragmented Oriental Forest of Madagascar. In: Forest Diversity and Management, Springer, Berlin, 49-68.
https://doi.org/10.1007/978-1-4020-5208-8_4