The current study was carried out to reveal the possible impacts of non-thermal plasma on water uptake by seeds, seed germination and vigor of seedlings of watermelon seeds using cold plasma jet at atmospheric pressure and room temperature. Cold atmospheric plasma jet with nitrogen gas sources was employed in this study. Five treatment doses and one control were used to conduct germination parameters. The effects of the different duration time of cold atmospheric plasma on the germination of treated watermelon seeds were studied. The cold plasma operated at 3 Kv and 14 l/min as a fixed input voltage and a fixed flow rate respectively. Cold atmospheric plasma increased the germination percentage of watermelon as well as the growth parameters (root and shoot length, dry weight), and the vigor of seedlings. The effects of cold plasma during this study depended on exposure time. The operation time of 4 min considered as an appropriate plasma dose to promote the germination parameters.
References
[1]
Fridman, G., Friedman, G., Gutsol, A., et al. (2008) Applied Plasma Medicine. Plasma Processes and Polymers, 5, 503-533.
https://doi.org/10.1002/ppap.200700154
[2]
Ŝimor, M., RáheÎ, J., Vojtek, P., et al. (2002) Atmospheric-Pressure Diffuse Coplanar Surface Discharge for Surface Treatments. Applied Physics Letters, 81, 2716-2718. https://doi.org/10.1063/1.1513185
[3]
Cernák, M., Cernáková, L’., Hudec, I., et al. (2009) Diffuse Coplanar Surface Barrier Discharge and Its Applications for In-Line Processing of Low-Added-Value Materials. The European Physical Journal Applied Physics, 47, p1-p6.
[4]
Graves, D.B. (2014) Low Temperature Plasma Biomedicine: A Tutorial Review. Physics of Plasmas, 21, 080901. https://doi.org/10.1063/1.4892534
[5]
Kong, M.G., Morfill, G. and Stolz, W. (2012) Plasma Medicine Applications of Low-Temperature Gas Plasmas in Medicine and Biology Plasma Medicine. In: Laroussi, M., Cambridge University Press, Cambridge.
[6]
Lu, X., Naidis, G.V., Laroussi, M., Reuter, S., Graves, D.B. and Ostrikov, K. (2016) Reactive Species in Non-Equilibrium Atmospheric-Pressure Plasmas: Generation, Transport, and Biological Effects. Physics Reports, 630, 1-84.
https://doi.org/10.1016/j.physrep.2016.03.003
[7]
Kolb, J.F., Mohamed, A.-A.H., Price, R.O., et al. (2008) Cold Atmospheric Pressure air Plasma Jet for Medical Applications. Applied Physics Letters, 92, 241501- 241503.
[8]
Lu, X.-P., Jiang, Z.-H., Xiong, Q., et al. (2008) An 11 cm Long Atmospheric Pressure Cold Plasma Plume for Applications of Plasma Medicine. Applied Physics Letters, 92, 081502-081504. https://doi.org/10.1063/1.2883945
[9]
Hong, Y.C., Cho, S.C., Kim, J.H. and Uhm, H.S. (2007) A Long Plasma Column in Aflexible Tube at Atmospheric Pressure. Physics of Plasmas, 14, 074502-074505.
[10]
Zhang, X., Li, M., Zhou, R., Feng, K. and Yang, S. (2008) Ablation of Liver Cancer Cells in Vitro by a Plasma Needle. Applied Physics Letters, 93, 021502-021504.
Nie, Q.-Y., Ren, C.-S., Wang, D.-Z. and Zhang, J.-L. (2008) A Simple Cold Ar Plasma Jet Generated with Afloating Electrode at Atmospheric Pressure. Applied Physics Letters, 93, 011503-011505. https://doi.org/10.1063/1.2956411
[13]
Lotfy, K. (2017) Cold Plasma Jet Construction to Use in Medical, Biology and Polymer Applications. Journal of Modern Physics, 8, 1901-1910.
https://doi.org/10.4236/jmp.2017.811113
[14]
France, R.M. and Short, R.D. (1998) Plasma Treatment of Polymers: The Effects of Energy Transfer from an Argon Plasma on the Surface Chemistry of Polystyrene, and Polypropylene. A High-Energy Resolution X-Ray Photoelectron Study. Langmuir, 14, 4827-4835. https://doi.org/10.1021/la9713053
[15]
France, R.M. and Short, R.D. (1997) Effects of Energy Transfer from an Argon Plasma on the Surface Chemistry of Poly(styrene), Low Density Poly(ethylene), Poly(propylene) and Poly(ethylene terephthalate). Journal of the Chemical Society, Faraday Transactions, 93, 3173-3178. https://doi.org/10.1039/a702311a
[16]
Wild, S. and Kesmodel, L.L. (2001) High Resolution Electron Energy Loss Spectroscopy Investigation of Plasma-Modified Polystyrene Surfaces. Journal of Vacuum Science & Technology A, 19, 856-860. https://doi.org/10.1116/1.1359531
[17]
Lommatzsch, U., Noeske, M., Degenhardt, J., Wübben, T., Strudthoff, S., Ellinghorst, G. and Hennemann, O.-D. (2007) Pretreatment and Surface Modification of Polymers via Atmospheric-Pressure Plasma Jet Treatment. In: Mittal, K.L., Ed., Polymer Surface Modification: Relevance to Adhesion, Vol. 4, VSP/Brill, Leiden, 25-32. https://doi.org/10.1163/ej.9789067644532.i-306.10
[18]
Canal, Molina, R., Bertran, E. and Erra, P. (2008) Study on the Influence of Scouring on the Wettability of Keratin Fibers before Plasma Treatment. Fibers Polymers, 9, 444-449. https://doi.org/10.1007/s12221-008-0071-8
[19]
Molina, Jovancic, P., Jocic, D., Bertran, E. and Erra, P. (2003) Surface Characterization of Keratin Fibres Treated by Water Vapour Plasma. Surface and Interface Analysis, 35, 128-135. https://doi.org/10.1002/sia.1510
[20]
Bormashenko and Grynyov, R. (2012) Plasma Treatment Induced Wetting Transitions on Biological Tissue (Pigeon Feathers). Colloids Surfaces B, 92, 367-371.
https://doi.org/10.1016/j.colsurfb.2011.11.053
[21]
Stoffels, E., Sakiyama, Y. and Graves, D.B. (2008) Cold Atmospheric Plasma: Charged Species and Their Interactions with Cells and Tissues. IEEE Transactions on Plasma Science, 36, 1441-1451. https://doi.org/10.1109/TPS.2008.2001084
[22]
Ito, M. and Ohta, T. (2012) Plasma Agriculture. Journal of the Korean Physical Society, 60, 937-943. https://doi.org/10.3938/jkps.60.937
[23]
Dhayal, M., Lee, S.-Y. and Park, S.-U. (2006) Application of Low-Temperature Substrate Bonding in Fabrication of Reusable Micro-Fluidic Devices. Vacuum, 80, 499-506. https://doi.org/10.1016/j.vacuum.2005.06.008
[24]
Sera, B., Spatenka, P., Sery, M., Vrchotova, N. and Hruskova, I. (2010) Influence of Plasma Treatment on Wheat and Oat Germination and Early Growth. IEEE Transactions on Plasma Science, 38, 2963-2967.
https://doi.org/10.1109/TPS.2010.2060728
[25]
Lynikiene, S., Pozeliene, A. and Rutkauskas, G. (2006) Influence of Corona Discharge Field on Seed Viability and Dynamics of Germination. International Agrophysics, 20, 195-200.
[26]
Bormashenko, E., Grynyov, R., Bormashenko, Y. and Drori, E. (2012) Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds. Scientific Reports, 2, 741. https://doi.org/10.1038/srep00741
[27]
Selcuk, M., Oksuz, L. and Basaran, P. (2008) Decontamination of Grains and Legumes Infected with Aspergillus spp. and Penicillum spp. by Cold Plasma Treatment. Bioresurse Technology, 99, 5104-5109.
https://doi.org/10.1016/j.biortech.2007.09.076
[28]
Basaran, P., Basaran-Akgul, N. and Oksuz, L. (2008) Elimination of Aspergillusparasiticus from Nut Surface with Low Pressure Cold Plasma (LPCP) Treatment. Food Microbiology, 25, 626-632. https://doi.org/10.1016/j.fm.2007.12.005
[29]
Henselova, M., Slováková, L., Martinka, M., et al. (2012) Growth, Anatomy and Enzyme Activity Changes in Zeamays L. Roots Induced by Treatment of Seeds with Low-Temperature Plasma. Biologia, 67, 490-497.
https://doi.org/10.2478/s11756-012-0046-5
[30]
Surowsky, B., Fischer, A., Schlueter, O., et al. (2013) Cold Plasma Effects on Enzyme Activity in a Model Food System. Innovative Food Science and Emerging Technologies, 19, 146-152. https://doi.org/10.1016/j.ifset.2013.04.002
[31]
Yin, M.Q., Huang, M.G., Ma, B.Z., et al. (2005) Stimulating Effects of Seed Treatment by Magnetized Plasma on Tomato Growth and Yield. Plasma Science and Technology, 7, 3143-3147. https://doi.org/10.1088/1009-0630/7/6/017
[32]
Denes, F., Manolache, S. and Young, R.A. (1999) Synthesis and Surface Functionalization under Cold-Plasma Conditions. Journal of Photopolymer Science and Technology, 12, 27-38. https://doi.org/10.2494/photopolymer.12.27
[33]
Li, L., Jiang, J.F., Li, J.G., Shen, M.C., He, X., Shao, H.L. and Dong, Y.H. (2014) Effects of Cold Plasma Treatment on Seed Germination and Seedling Growth of Soybean. Scientific Reports, 4, 5859-5865.
[34]
Tong, J.Y., He, R., Zhang, X.L., Zhan, R.T., Chen, W.W. and Yang, S.Z. (2014) Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata. Plasma Science and Technology, 16, 260-266. https://doi.org/10.1088/1009-0630/16/3/16
[35]
Abdul-Baki, A.A. and Anderson, J.D. (1973) Vigour Determination in Soybean Seed by Multiplication. Crop Science, 3, 630-633.
https://doi.org/10.2135/cropsci1973.0011183X001300060013x
[36]
Stolàik, T., Henselovà, M., Martinka, M., Novák, O., Zahoranová, A. and Cernák, M. (2015) Effect of Low-Temperature Plasma on the Structure of Seeds, Growth and Metabolism of Endogenous Phytohormones in Pea (Pisum sativum L.). Plasma Chemistry and Plasma Processing, 35, 659-676.
https://doi.org/10.1007/s11090-015-9627-8
[37]
Dröge, W. (2002) Free Radicals in the Physiological Control of Cell Function. Physiological Reviews, 82, 47-95.
[38]
Arc, E., Galland, M., Godin, B., Cueffand, G. and Rajjou, L. (2013) Nitric Oxide Implication in the Control of Seed Dormancy and Germination. Frontiers in Plant Science, 4, 1-13. https://doi.org/10.3389/fpls.2013.00346
[39]
Dhayal, M., Lee, S.Y. and Park, S.U. (2006) Using Low-Pressure Plasma for Carthamus tinctorium L. Seed Surface Modification. Vacuum, 80, 499-506.
https://doi.org/10.1016/j.vacuum.2005.06.008
[40]
Zhou, Z.W., Huang, Y.F., Yang, S.Z. and Chen, W. (2011) Introduction of a New Atmospheric Pressure Plasma Device and Application on Tomato Seeds. Agricultural Science, 2, 23-27. https://doi.org/10.4236/as.2011.21004
[41]
Wu, A.J., Zhang, H., Li, X.D., Lu, S.Y., Du, C.M. and Yan, J.H. (2014) Spectroscopic Diagnostics of Rotating Gliding Arc Plasma Codriven by a Magnetic Field and Tangential Flow. IEEE Transactions on Plasma Science, 42, 3560-3568.
https://doi.org/10.1109/TPS.2014.2358255
[42]
Zhang, W.J. and Bjorn, L.O. (2009) The Effect of Ultraviolet Radiation on the Accumulation of Medical Compounds in Plants. Fitoterapia, 80, 207-212.
https://doi.org/10.1016/j.fitote.2009.02.006
[43]
Grzegorzewski, F., Rohn, S., Kroh, L.W., Geyer, M. and Schluter, O. (2010) Surface Morphology and Chemical Composition of Lamb’s Lettuce (Valerianella locusta) after Exposure to a Low-Pressure Oxygen Plasma. Food Chemistry, 122, 1145-1152.
https://doi.org/10.1016/j.foodchem.2010.03.104
[44]
Adetimirin, V.O. (2008) Stand Establishment and Early Field Vigor Variation in a Tropicalised Shrunken-2 Maize Population. Field Crops Research, 108, 143-149.
https://doi.org/10.1016/j.fcr.2008.04.007
[45]
Matra, K. (2016) Non-Thermal Plasma Germination Enhancement of Radish Seeds. Procedia Computer Science, 86, 132-135.