全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Entanglement of Moving and Non-Moving Two-Level Atoms

DOI: 10.4236/jqis.2017.74014, PP. 172-184

Keywords: Atomic Inversion, Von Neumann Entropy, Atomic Motion, Entropy Squeezing

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we study the dynamics of the atomic inversion, von Neumann entropy and entropy squeezing for moving and non-moving two-level atoms interacting with a Perelomov coherent state. The final state of the system using specific initial conditions is obtained. The effects of Perelomov and detuning parameters are examined in the absence and presence of the atomic motion. Important phenomena such as the collapse and revival are shown to be very sensitive to the variation of the Perelomov parameter in the presence of detuning parameter. The results show that the Perelomov parameter is very useful in generating a high amount of entanglement due to variation of the detuning parameter.

References

[1]  Shor, P.W. (1995) Scheme for Reducing Decoherence in Quantum Computer Memory. Physical Review A, 48, 2493.
https://doi.org/10.1103/PhysRevA.52.R2493
[2]  Bennett, C.H. (1995) Quantum Information and Computation. Physics Today, 48, 24.
https://doi.org/10.1063/1.881452
[3]  Yin, Z.-Q., Li, H.-W., Chen, W., Han, Z.-F. and Guo, G.-C. (2010) Security of Counterfactual Quantum Cryptography. Physical Review A, 82, Article ID: 042335.
https://doi.org/10.1103/PhysRevA.82.042335
[4]  Noh, T.G. (2009) Counterfactual Quantum Cryptography. Physical Review Letters, 103, Article ID: 230501.
https://doi.org/10.1103/PhysRevLett.103.230501
[5]  Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A. and Wootters, W.K. (1993) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70, 1895-1899.
https://doi.org/10.1103/PhysRevLett.70.1895
[6]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.
[7]  Shannon, C.E. and Weaver, W. (1949) The Mathematical Theory of Communication. Urbana University Press, Chicago.
[8]  Wehrl, A. (1978) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Reviews of Modern Physics, 50, 221.
https://doi.org/10.1103/RevModPhys.50.221
[9]  El-Shahat, T.M., Abdel-Khalek, S., Abdel-Aty, M. and Obada, A.S-F. (2003) Aspects on Entropy Squeezing of a Two-Level Atom in a Squeezed Vacuum. Journal of Modern Optics, 50, 2013.
https://doi.org/10.1080/0950034031000095542
[10]  Allen, L., Eberly, J.H. and Wiley, J. (1975) Optical Resonance and Two-Level Atoms. Reviews of Modern Physics, 50, 2013.
[11]  El-Shahat, T.M., Abdel-Khalek, S., Obada, A.S-F. (2005) Entropy Squeezing of a Driven Two-Level Atom in a Cavity with Injected Squeezed Vacuum. Chaos, Solitons, Fractals, 26, 1293-1307.
https://doi.org/10.1016/j.chaos.2005.03.013
[12]  Abdel-Khalek, S., Al-Quthami, M. and Ahmed, M.M.A. (2014) Entanglement Quantifier Based on Atomic Wehrl Entropy for Non-Linear Interaction between a Single Two-Level Atom and SU(1,1) Quantum System. Journal of Quantum Information Science, 4, 44-53.
https://doi.org/10.4236/jqis.2014.41004
[13]  Abdel-Khalek, S., Al-Quthami, M. and Ahmed, M.M.A. (2011) Exact Treatment of the Jaynes Cummings Model under the Action of an External Classical Field. Annals of Physics (New York), 326, 2486.
https://doi.org/10.1016/j.aop.2011.05.005
[14]  Abdalla, M.S. and Khalil, E.M. (2012) Two Coupled Oscillators in the Form of a Frequency Converter in Interaction with a Single Atom via Two-Photon Processes. Journal of Russian Laser Research, 33, 336-348.
https://doi.org/10.1007/s10946-012-9288-5
[15]  Sadiek, G., Lashin, E. and Abdalla, M.S. (2009) Entanglement of a Two-Qubit System with Anisotropic XYZ Exchange Coupling in a Nonuniform Time-Dependent External Magnetic Field. Physica B: Condensed Matter, 404, 1719.
https://doi.org/10.1016/j.physb.2009.02.011
[16]  Abdalla, M.S., Ahmed, M.M.A. and Obada, A.S-F. (1990) Dynamics of a Non-Linear Jaynes-Cummings Model. Physica A: Statistical Mechanics and Its Applications, 162, 215.
https://doi.org/10.1016/0378-4371(90)90440-4
[17]  Bennett, C.H. and Di Vincenzo, D.P. (2000) Quantum Information and Computation. Nature, 404, 247.
https://doi.org/10.1038/35005001
[18]  Levy, J. (2001) Quantum-Information Processing with Ferroelectrically Coupled Quantum Dots. Physical Review A, 64, Article ID: 0523068.
https://doi.org/10.1103/PhysRevA.64.052306
[19]  Burkard, G. and Loss, D. (2002) Cancellation of Spin-Orbit Effects in Quantum Gates Based on the Exchange Coupling in Quantum Dots. Physical Review Letters, 88, Article ID: 0479038.
https://doi.org/10.1103/PhysRevLett.88.047903
[20]  Louisell, W.H., Yariv, A. and Siegman, A.E. (1961) Quantum Fluctuations and Noise in Parametric Processes. I. Physical Review, 124, 1646.
https://doi.org/10.1103/PhysRev.124.1646
[21]  Louisell, W.H. (1960) Coupled Mode and Parametric Electronics. Wiley, New York.
[22]  Abdalla, M.S. and Nassar, M.M. (2009) Quantum Treatment of the Time-Dependent Coupled Oscillators under the Action of a Random Force. Annals of Physics, 324, 637.
https://doi.org/10.1016/j.aop.2008.09.006
[23]  Abdalla, M.S. (1996) Quantum Treatment of the Time-Dependent Coupled Oscillators. Journal of Physics A: Mathematical and General, 29, 1997.
[24]  Mollow, B.R. and Glauber, R.J. (1967) Quantum Theory of Parametric Amplification. Physical Review, 160, 1076.
https://doi.org/10.1103/PhysRev.160.1076
[25]  Abdalla, M.S. (1991) Statistical Properties of a Transformed Tavis-Cummings Model. Physics A, 179, 131.
https://doi.org/10.1016/0378-4371(91)90218-2
[26]  Tucker, J.D. and Walls, F. (1969) Quantum Theory of the Traveling-Wave Frequency Converter. Physical Review, 178, 2036.
https://doi.org/10.1103/PhysRev.178.2036
[27]  Liu, X. (2000) Entropy Behaviors and Statistical Properties of the Field Interacting with a Type Three-Level Atom. Physics A, 286, 588.
https://doi.org/10.1016/S0378-4371(00)00302-2
[28]  Abdel-Aty, M., Sebawe, A.M.A. and Obada, S.-F. (2002) Uncertainty Relation and Information Entropy of a Time-Dependent Bimodal Two-Level System. Journal of Physics B, 35, 4773.
https://doi.org/10.1088/0953-4075/35/23/302
[29]  Abdel-Khalek, S.A. and Obada, S.-F. (2009) The Atomic Wehrl Entropy of a V-Type Three-Level Atom Interacting with Two-Mode Squeezed Vacuum State. Journal of Russian Laser Research, 30, 146.
https://doi.org/10.1007/s10946-009-9066-1
[30]  Eleuch, H., Guerin, S. and Jauslin, H.R. (2012) Effects of an Environment on a Cavity-Quantum-Electrodynamics System Controlled by Bichromatic Adiabatic Passage. Physical Review A, 85, Article ID: 013830.
https://doi.org/10.1103/PhysRevA.85.013830
[31]  Abdel-Khalek, S. and Nofal, T.A. (2011) Correlation and Entanglement of a Three-Level Atom Inside a Dissipative Cavity. Physics A, 390, 2626.
https://doi.org/10.1016/j.physa.2011.02.030
[32]  Rempe, G., Walther, H. and Klein, N. (1987) Observation of Quantum Collapse and Revival in a One-Atom Maser. Physical Review Letters, 58, 353.
https://doi.org/10.1103/PhysRevLett.58.353
[33]  Perelomov, A.M. (1985) Generalized Coherent States and Their Applications. Springer-Verlag, Berlin.
[34]  Perelomov, A.M. (1972) Coherent States for Arbitrary Lie Groups. Communications in Mathematical Physics, 26, 222.
https://doi.org/10.1007/BF01645091
[35]  Anastopoulos, C. and Halliwell, J.J. (1955) Generalized Uncertainty Relations and Long-Time Limits for Quantum Brownian Motion Models. Physical Review D, 51, 6870.
https://doi.org/10.1103/PhysRevD.51.6870

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133