Hydrocephalus is a neurological condition
characterized by altered cerebrospinal fluid (CSF) flow leading to an
accumulation of CSF inside the cranial vault. Neuropathogenesis associated with
hydrocephalus has been elucidated by pathological studies of human brains and
through experimental and genetic animal models. Experimental animal models have
been developed in numerous species using a variety of methods and agents to
induce hydrocephalus or through genetic mutations in rodents. Each of these
animal models has been described briefly in this review, along with the basic
strengths and weaknesses of each model. Although none of these models can fully
mimic the human condition, they each provide fundamental knowledge contributing
to understanding more about the pathogenesis of hydrocephalus and its
underlying causes.
References
[1]
Del Bigio, M.R. (2001) Future Directions for Therapy of Childhood Hydrocephalus: A View from the Laboratory. Pediatric Neurosurgery, 34, 172-181.
https://doi.org/10.1159/000056016
[2]
Del Bigio, M.R. (2004) Cellular Damage and Prevention in Childhood Hydrocephalus. Brain Pathology, 14, 317-324.
https://doi.org/10.1111/j.1750-3639.2004.tb00071.x
[3]
Hirayama, A. (1980) Histopathological Study of Congenital and Acquired Experimental Hydrocephalus. Brain & Development, 2, 171-189.
https://doi.org/10.1016/S0387-7604(80)80038-6
[4]
Hochwald, G.M. (1985) Animal Models of Hydrocephalus: Recent Developments. Proceedings of the Society for Experimental Biology and Medicine, 178, 1-11.
https://doi.org/10.3181/00379727-178-41977
[5]
Khan, O.H. and Del Bigio, M.R. (2006) Experimental Models of Hydrocephalus. In: Tatlisumak, T. and Fisher, M., Eds., Handbook of Experimental Neurology: Methods and Techniques in Animal Research, Cambridge University Press, Cambridge, 457-471. https://doi.org/10.1017/CBO9780511541742.026
[6]
Matsumoto, S., Hirayama, A., Yamasaki, S., Shirataki, K. and Fujiwara, K. (1975) Comparative Study of Various Models of Experimental Hydrocephalus. Child’s Brain, 1, 236-242. https://doi.org/10.1159/000119572
[7]
Dixon, W.E. and Heller, H. (1932) Experimentelle hypertonie durch Erohung des intrakaniellen Druckes. Archiv for Experimentelle Pathologie und Pharmakologie, 166, 265-275. https://doi.org/10.1007/BF01860670
[8]
Lindauer, M.A. and Griffith, J.Q. (1938) Cerebrospinal Pressure, Hydrocephalus and Blood Pressure in Cat Following Intracisternal Injection of Colloidal Kaolin. Proceedings of the Society for Experimental Biology and Medicine, 39, 547-549.
https://doi.org/10.3181/00379727-39-10268
[9]
Schurr, P.H., McLaurin, R.L. and Ingraham, F.D. (1953) Experimental Studies on the Circulation of the Cerebrospinal Fluid and Methods of Producing Communicating Hydrocephalus in the Dog. Journal of Neurosurgery, 10, 515-525.
https://doi.org/10.3171/jns.1953.10.5.0515
[10]
da Silva Lopes, L., Slobodian, I. and Del Bigio, M.R. (2009) Characterization of Juvenile and Young Adult Mice Following Induction of Hydrocephalus with Kaolin. Experimental Neurology, 219, 187-196.
https://doi.org/10.1016/j.expneurol.2009.05.015
[11]
Wang, D., Nykanen, M., Yang, N., Winlaw, D., North, K., Verkman, A.S. and Owler, B.K. (2011) Altered Cellular Localization of Aquaporin-1 in Experimental Hydrocephalus in Mice and Reduced Ventriculomegaly In Aquaporin-1 Deficiency. Molecular and Cellular Neuroscience, 46, 318-324.
https://doi.org/10.1016/j.mcn.2010.10.003
[12]
Del Bigio, M.R., Crook, C.R. and Buist, R. (1997) Magnetic Resonance Imaging and Behavioral Analysis of Immature Rats with Kaolin-Induced Hydrocephalus: Pre- and Postshunting Observations. Experimental Neurology, 148, 256-264.
https://doi.org/10.1006/exnr.1997.6644
[13]
Del Bigio, M.R., and Zhang, Y.W. (1998) Cell Death, Axonal Damage, and Cell Birth in the Immature Rat Brain Following Induction of Hydrocephalus. Experimental Neurology, 154, 157-169. https://doi.org/10.1006/exnr.1998.6922
[14]
Hochwald, G.M., Boal, R.D., Marlin, A.E. and Kumar, A.J. (1975) Changes in Regional Blood-Flow and Water Content of Brain and Spinal Cord in Acute and Chronic Experimental Hydrocephalus. Developmental Medicine and Child Neurology Supplement, 35, 42-50.
[15]
Hochwald, G.M., Nakamura, S. and Camins, M.B. (1981) The Rat in Experimental Obstructive Hydrocephalus. Z Kinderchir, 34, 403-410.
[16]
Li, J., McAllister, J.P., II, Shen, Y., Wagshul, M.E., Miller, J.M., Egnor, M.R., Johnston, M.G., Haacke, E.M. and Walker, M.L. (2008) Communicating Hydrocephalus in Adult Rats with Kaolin Obstruction of the Basal Cisterns or the Cortical Subarachnoid Space. Experimental Neurology, 211, 351-361.
https://doi.org/10.1016/j.expneurol.2007.12.030
[17]
Madhavi, C. and Jacob, M. (1989) Atypical Cilia in the Choroid Plexus of Guineapig. Indian Journal of Medical Research, 90, 484-489.
[18]
Madhavi, C. and Jacob, M. (1990) Morphometry of Choroid Plexus in Hydrocephalic Guineapigs. Indian Journal of Medical Research, 92, 89-94.
[19]
Madhavi, C. and Jacob, M. (1992) Morphometry of Mitochondria in the Choroidal Ependyma of Hydrocephalic Guineapigs. Indian Journal of Medical Research, 96, 72-77.
[20]
Weller, R.O. and Wisniewski, H. (1969) Histological and Ultrastructural Changes with Experimental Hydrocephalus in Adult Rabbits. Brain Pathology, 92, 819-828.
https://doi.org/10.1093/brain/92.4.819
[21]
Del Bigio, M.R., da Silva, M.C., Drake, J.M. and Tuor, U.I. (1994) Acute and Chronic Cerebral White Matter Damage in Neonatal Hydrocephalus. Canadian Journal of Neurological Sciences, 21, 299-305.
https://doi.org/10.1017/S0317167100040865
[22]
Eskandari, R., McAllister, J.P., II, Miller, J.M., Ding, Y., Ham, S.D., Shearer, D.M. and Way, J.S. (2004) Effects of Hydrocephalus and Ventriculoperitoneal Shunt Therapy on Afferent and Efferent Connections in the Feline Sensorimotor Cortex. Journal of Neurosurgery, 101, 196-210.
[23]
Hochwald, G.M., Epstein, F., Malhan, C. and Ransohoff, J. (1973) The Relationship of Compensated to Decompensated Hydrocephalus in the Cat. Journal of Neurosurgery, 39, 694-697. https://doi.org/10.3171/jns.1973.39.6.0694
[24]
Di Curzio, D.L., Buist, R.J. and Del Bigio, M.R. (2013) Reduced Subventricular Zone Proliferation and White Matter Damage in Juvenile Ferrets with Kaolin-Induced Hydrocephalus. Experimental Neurology, 248, 112-128.
https://doi.org/10.1016/j.expneurol.2013.06.004
[25]
Di Curzio, D.L., Turner-Brannen, E., Mao, X. and Del Bigio, M.R. (2016) Magnesium Sulfate Treatment for Juvenile Ferrets Following Induction of Hydrocephalus with Kaolin. Fluids and Barriers of the CNS, 13, 7.
https://doi.org/10.1186/s12987-016-0031-4
[26]
DeFeo, D.R., Myers, P., Foltz, E.L., Everett, B. and Ramshaw, B. (1979) Histological Examination of Kaolin-Induced Hydrocephalus. Its Implications in the Therapy of Animals with Experimentally Induced Hydrocephalus. Journal of Neurosurgery, 50, 70-74. https://doi.org/10.3171/jns.1979.50.1.0070
[27]
Rekate, H.L., Erwood, S., Brodkey, J.A., Chizeck, H.J., Spear, T., Ko, W. and Montague, F. (1985) Etiology of Ventriculomegaly in Choroid Plexus Papilloma. Journal of Pediatric Neurosciences, 12, 196-201. https://doi.org/10.1159/000120250
[28]
Weller, R.O., Wisniewski, H., Shulman, K. and Terry, R.D. (1971) Experimental Hydrocephalus in Young Dogs: Histological and Ultrastructural Study of the Brain Tissue Damage. Journal of Neuropathology & Experimental Neurology, 30, 613-627. https://doi.org/10.1097/00005072-197110000-00006
[29]
Jetzki, S., Weinzierl, M., Krause, I., Hahne, S., Rehbaum, H., Kiausch, M., Kozubek, I., Hellenbroich, C., Oertel, M., Walter, M. and Leonhardt, S. (2012) A Multisensor Implant for Continuous Monitoring of Intracranial Pressure Dynamics. IEEE Transactions on Biomedical Circuits and Systems, 6, 356-365.
https://doi.org/10.1109/TBCAS.2012.2183131
[30]
Edwards, M.S., Harrison, M.R., Halks-Miller, M., Nakayama, D.K., Berger, M.S., Glick, P.L. and Chinn, D.H. (1984) Kaolin-Induced Congenital Hydrocephalus in Utero in Fetal Lambs and Rhesus Monkeys. Journal of Neurosurgery, 60, 115-122.
https://doi.org/10.3171/jns.1984.60.1.0115
[31]
Johnston, M.G., Del Bigio, M.R., Drake, J.M., Armstrong, D., Di Curzio, D.L. and Bertrand, J. (2013) Pre- and Post-Shunting Observations in Adult Sheep with Kaolin-Induced Hydrocephalus. Fluids and Barriers of the CNS, 10, 24.
https://doi.org/10.1186/2045-8118-10-24
[32]
Nakayama, D.K., Harrison, M.R., Berger, M.S., Chinn, D.H., Halks-Miller, M. and Edwards, M.S. (1983) Correction of Congenital Hydrocephalus in Utero I. The Model: Intracisternal Kaolin Produces Hydrocephalus in Fetal Lambs and Rhesus Monkeys. Journal of Pediatric Surgery, 18, 331-338.
https://doi.org/10.1016/S0022-3468(83)80177-8
[33]
Shinoda, M. and Olson, L. (1997) Immunological Aspects of Kaolin-Induced Hydrocephalus. International Journal of Neuroscience, 92, 9-28.
https://doi.org/10.3109/00207459708986386
[34]
Del Bigio, M. (1993) Neuropathological Changes Caused by Hydrocephalus. Acta Neuropathologica, 85, 573-585. https://doi.org/10.1007/BF00334666
[35]
James, A.E., Jr and Strecker, E.P. (1973) Use of Silastic to Produce Communicating Hydrocephalus. Investigative Radiology, 8, 105-110.
https://doi.org/10.1097/00004424-197303000-00010
[36]
Go, K.G., Stokroos, I., Blaauw, E.H., Zuiderveen, F. and Molenaar, I. (1976) Changes of Ventricular Ependyma and Choroid Plexus in Experimental Hydrocephalus, as Observed by Scanning Electron Microscopy. Acta Neuropathologica, 34, 55-64. https://doi.org/10.1007/BF00684944
[37]
Del Bigio, M.R. and Bruni, J.E. (1988a) Changes in Periventricular Vasculature of Rabbit Brain Following Induction of Hydrocephalus and after Shunting. Journal of Neurosurgery, 69, 115-120. https://doi.org/10.3171/jns.1988.69.1.0115
[38]
Del Bigio, M.R. and Bruni, J.E. (1988b) Periventricular Pathology in Hydrocephalic Rabbits before and after Shunting. Acta Neuropathologica (Berl), 77, 186-195.
https://doi.org/10.1007/BF00687430
[39]
Del Bigio, M.R. and Bruni, J.E. (1991) Silicone Oil-Induced Hydrocephalus in the Rabbit. Child’s Nervous System, 7, 79-84. https://doi.org/10.1007/BF00247861
[40]
Page, R.B. (1975) Scanning Electron Microscopy of the Ventricular System in Normal and Hydrocephalic Rabbits. Preliminary Report and Atlas. Journal of Neurosurgery, 42, 646-664. https://doi.org/10.3171/jns.1975.42.6.0646
[41]
Wisniewski, H., Weller, R.O. and Terry, R.D. (1969) Experimental Hydrocephalus Produced by the Subarachnoid Infusion of Silicone Oil. Journal of Neurosurgery, 31, 10-14. https://doi.org/10.3171/jns.1969.31.1.0010
[42]
Wisniewski, H. (1961) Research on Experimental Filling of the Ventricular System of Dogs. Acta Neuropathologica, 1, 238-244. https://doi.org/10.1007/BF00687190
[43]
Zhao, K., Sun, H., Shan, Y., Mao, B.Y. and Zhang, H. (2010) Cerebrospinal Fluid Absorption Disorder of Arachnoid Villi in a Canine Model of Hydrocephalus. Neurology India, 58, 371-376. https://doi.org/10.4103/0028-3886.65601
[44]
Morescalchi, F., Costagliola, C., Duse, S., Gambicorti, E., Parolini, B., Arcidiacono, B., Romano, M.R. and Semeraro, F. (2014) Heavy Silicone Oil and Intraocular Inflammation. BioMed Research International, 2014, Article ID: 574825.
https://doi.org/10.1155/2014/574825
[45]
Brown, J.A., Rachlin, J., Rubin, J.M. and Wollmann, R.L. (1984) Ultrasound Evaluation of Experimental Hydrocephalus in Dogs. Surgical Neurology, 22, 273-276.
https://doi.org/10.1016/0090-3019(84)90013-2
[46]
Page, L.K. and White, W.P. (1982) Transsphenoidal Injection of Silicone for the Production of Communicating or Obstructive Hydrocephalus in Dogs. Surgical Neurology, 17, 247-250. https://doi.org/10.1016/0090-3019(82)90113-6
[47]
Dandy, W.E. and Blackfan, K.D. (1913) An Experimental and Clinical Study of Internal Hydrocephalus. JAMA, 61, 2216-2217.
https://doi.org/10.1001/jama.1913.04350260014006
De, S.N. (1950) A Study of the Changes in the Brain in Experimental Internal Hydrocephalus. The Journal of Pathology and Bacteriology, 62, 197-207.
https://doi.org/10.1002/path.1700620207
[50]
Johnson, M.J., Ayzman, I., Wood, A.S., Tkach, J.A., Klauschie, J., Skarupa, D.J., McAllister, J.P., II and Luciano, M.G. (1999) Development and Characterization of an Adult Model of Obstructive Hydrocephalus. Journal of Neuroscience Methods, 91, 55-65. https://doi.org/10.1016/S0165-0270(99)00072-2
[51]
Park, Y.S., Park, S.W., Suk, J.S. and Nam, T.K. (2011) Development of an Acute Obstructive Hydrocephalus Model in Rats Using N-butyl Cyanoacrylate. Child’s Nervous System, 27, 903-910. https://doi.org/10.1007/s00381-011-1398-9
[52]
Slobodian, I., Krassioukov-Enns, D. and Del Bigio, M.R. (2007) Protein and Synthetic Polymer Injection for Induction of Obstructive Hydrocephalus in Rats. Cerebrospinal Fluid Research, 4, 9. https://doi.org/10.1186/1743-8454-4-9
[53]
Di Rocco, C., Pettorossi, V.E., Caldarelli, M., Mancinelli, R. and Velardi, F. (1977) Experimental Hydrocephalus Following Mechanical Increment of Intraventricular Pulse Pressure. Experientia, 33, 1470-1472. https://doi.org/10.1007/BF01918814
[54]
Di Rocco, C., Pettorossi, V.E., Caldarelli, M., Mancinelli, R. and Velardi, F. (1978) Communicating Hydrocephalus Induced by Mechanically Increased Amplitude of the Intraventricular Cerebrospinal Fluid Pressure: Experimental Studies. Experimental Neurology, 59, 40-52. https://doi.org/10.1016/0014-4886(78)90199-1
[55]
Di Rocco, C., di Tripani, G., Pettorossi, V.E. and Caldarelli, M. (1979) On the Pathology of Experimental Hydrocephalus Induced by Artificial Increase in Endoventricular CSF Pulse Pressure. Childs Brain, 5, 81-95.
[56]
Rekate, H.L. (2011) A Consensus on the Classification of Hydrocephalus: Its Utility in the Assessment of Abnormalities of Cerebrospinal Fluid Dynamics. Child’s Nervous System, 27, 1535-1541. https://doi.org/10.1007/s00381-011-1558-y
[57]
Stempak, J.G. (1964) Etiology of Trypan Blue Induced Antenatal Hydrocephalus in the Albino Rat. The Anatomical Record, 148, 561-571.
https://doi.org/10.1002/ar.1091480407
[58]
Agnew, W.F., Fauvre, F.M. and Pudenz, P.H. (1968) Tellurium Hydrocephalus: Distribution of Tellurium-127m between Maternal, Fetal, and Neonatal Tissues of the Rats. Experimental Neurology, 21, 120-131.
https://doi.org/10.1016/0014-4886(68)90038-1
[59]
Duckett, S. (1971) The Morphology of Tellurium-Induced Hydrocephalus. Experimental Neurology, 31, 1-16. https://doi.org/10.1016/0014-4886(71)90172-5
[60]
Garro, F. and Pentschew, A. (1964) Neonatal Hydrocephalus in the Offspring of Rats Fed during Pregnancy Non-Toxic Amounts of Tellurium. Archiv fur Psychiatrie und Nervenkrankheiten, 206, 272-280. https://doi.org/10.1007/BF00940754
[61]
McLone, D.G. (1984) Congenital Hydrocephalus in Mice and Man. In: Kalter, H., Ed., Issues and Reviews in Teratology, Vol. 2, Plenum Press, New York, 67-89.
https://doi.org/10.1007/978-1-4615-7314-2_3
[62]
Johanson, C.E., Szmydynger Chodobska, J., Chodobski, A., Baird, A., McMillan, P. and Stopa, E.G. (1999) Altered Formation and Bulk Absorption of Cerebrospinal Fluid in FGF-2-Induced Hydrocephalus. American Journal of Physiology, 277, R263-R271.
[63]
Pearce, R.K., Collins, P., Jenner, P., Emmett, C. and Marsden, C.D. (1996) Intraventricular Infusion of Basic Fibroblast Growth Factor (bFGF) in the MPTP-Treated Common Marmoset. Synapse, 23, 192-200.
https://doi.org/10.1002/(SICI)1098-2396(199607)23:3<192::AID-SYN8>3.0.CO;2-3
[64]
Cohen, A.R., Leifer, D.W., Zechel, M., Flaningan, D.P., Lewin, J.S. and Lust, W.D. (1999) Characterization of a Model of Hydrocephalus in Transgenic Mice. Journal of Neurosurgery, 91, 978-988. https://doi.org/10.3171/jns.1999.91.6.0978
[65]
Galbreath, E., Kim, S.J., Park, K., Brenner, M. and Messing, A. (1995) Overexpression of TGF-beta 1 in the Central Nervous System of Transgenic Mice Results in Hydrocephalus. Journal of Neuropathology & Experimental Neurology, 54, 339-349. https://doi.org/10.1097/00005072-199505000-00007
[66]
Lacombe, P., Mathews, P.M., Schmidt, S.D., Breidert, T., Heneka, M.T., Landreth, G.E., Feinstein, D.L. and Galea, E. (2004) Effect of Anti-Inflammatory Agents on Transforming Growth Factor Beta Over-Expressing Mouse Brains: A Model Revised. Journal of Neuroinflammation, 1, 11. https://doi.org/10.1186/1742-2094-1-11
[67]
Tada, T., Kanaji, M. and Kobayashi, S. (1994) Induction of Communicating Hydrocephalus in Mice by Intrathecal Injection of Human Recombinant Transforming Growth Factor-Beta 1. Journal of Neuroinflammation, 50, 153-158.
[68]
Tada, T., Zhan, H., Tanaka, Y., Hongo, K., Matsumoto, K. and Nakamura, T. (2006) Intraventricular Administration of Hepatocyte Growth Factor Treats Mouse Communicating Hydrocephalus Induced by Transforming Growth Factor β1. Neurobiology of Disease, 21, 576-586. https://doi.org/10.1016/j.nbd.2005.09.002
[69]
Wyss-Coray, T., Feng, L., Masliah, E., Ruppe, M.D., Lee, H.S., Toggas, S.M., Rockenstein, E.M. and Mucke, L. (1995) Increased Central Nervous System Production of Extracellular Matrix Components and Development of Hydrocephalus in Transgenic Mice Overexpressing Transforming Growth Factor-Beta 1. American Journal of Pathology, 147, 53-67.
[70]
Dietrich, W.D., Alonso, O., Busto, R. and Finklestein, S.P. (1996) Posttreatment with Intravenous Basic Fibroblast Growth Factor Reduces Histopathological Damage Following Fluid-Percussion Brain Injury in Rats. Journal of Neurotrauma, 13, 309-316.
[71]
Wagner, J.P., Black, I.B. and DiCicco-Bloom, E. (1999) Stimulation of Neonatal and Adult Brain Neurogenesis by Subcutaneous Injection of Basic Fibroblast Growth Factor. Journal of Neuroscience, 19, 6006-6016.
[72]
Ahn, S.O., Chang, Y.S., Sung, D.K., Sung, S.I., Yoo, H.S., Lee, J.H., Oh, W.I. and Park, W.S. (2013) Mesenchymal Stem Cells Prevent Hydrocephalus after Severe Intraventricular Hemorrhage. Stroke, 44, 497-504.
https://doi.org/10.1161/STROKEAHA.112.679092
[73]
Ahn, S.O., Chang, Y.S., Sung, D.K., Sung, S.I., Yoo, H.S., Im, G.H., Choi, S.J. and Park, W.S. (2015) Optimal Route for Mesenchymal Stem Cells Transplantation after Severe Intraventricular Hemorrhage in Newborn Rats. PLoS ONE, 10, e0132919.
https://doi.org/10.1371/journal.pone.0132919
[74]
Aquilina, K., Hobbs, C. Tucker, A., Whitelaw, A. and Thoresen, M. (2008) Do Drugs That Block Transforming Growth Factor Beta Reduce Posthaemorrhagic Ventricular Dilatation in a Neonatal Rat Model? Acta Padiatrica, 97, 1181-1186.
https://doi.org/10.1111/j.1651-2227.2008.00903.x
[75]
Gao, F., Liu, F., Chen, Z., Hua, Y., Keep, R.F. and Xi, G. (2014) Hydrocephalus after Intraventricular Hemorrhage: The Role of Thrombin. Journal of Cerebral Blood Flow & Metabolism, 34, 489-494. https://doi.org/10.1038/jcbfm.2013.225
[76]
Gao, F., Zheng, M., Hua, Y., Keep, R.F. and Xi, G. (2016) Acetazolamide Attenuates Thrombin-Induced Hydrocephalus. Acta Neurochirurgica Supplement, 121, 373-377. https://doi.org/10.1007/978-3-319-18497-5_64
[77]
Meng, H., Li, F., Hu, R., Yuan, Y., Gong, G., Hu, S. and Feng, H. (2015) Deferoxamine Alleviates Chronic Hydrocephalus after Intraventricular Hemorrhage through Iron Chelation and Wnt1/Wnt3a Inhibition. Brain Research, 1602, 44-52.
https://doi.org/10.1016/j.brainres.2014.08.039
[78]
Zhao, J, Chen, Z., Xi, G., Keep, R.F. and Hua, Y. (2014) Deferoxamine Attenuates Acute Hydrocephalus after Traumatic Brain Injury in Rats. Translational Stroke Research, 5, 586-594. https://doi.org/10.1007/s12975-014-0353-y
[79]
Yung, Y.C., Mutoh, T., Lin, M.E., Noguchi, K., Rivera, R.R., Choi, J.W., Kingsbury, M.A. and Chun, J. (2011) Lysophosphatidic Acid Signaling May Initiate Fetal Hydrocephalus. Science Translational Medicine, 3, 99ra87.
https://doi.org/10.1126/scitranslmed.3002095
[80]
Del Bigio, M.R. (2011) Cell Proliferation in Human Ganglionic Eminence and Suppression after Prematurity-Associated Haemorrhage. Brain, 134, 1344-1361.
https://doi.org/10.1093/brain/awr052
[81]
Lategan, B., Chodirker, B.N. and Del Bigio, M.R. (2010) Fetal Hydrocephalus Caused by Cryptic Intraventricular Hemorrhage. Brain Pathology, 20, 391-398.
https://doi.org/10.1111/j.1750-3639.2009.00293.x
[82]
Shaheen, R., Sebai, M.A., Patel, N., Ewida, N., Kurdi, W., Altweijri, I., Sogaty, S., Almardawi, E., Seidahmed, M.Z., Alnemri, A., Madirevula, S., Ibrahim, N., Abdulwahab, F., Hashem, M., Al-Sheddi, T., Alomar, R., Alobeid, E., Sallout, B., AlBaqawi, B., AlAali, W., Ajaji, N., Lesmana, H., Hopkin, R.J., Dupuis, L., Mendoza-Londono, R., Al Rukban, H., Yoon, G., Faqeih, E. and Alkuraya, F.S. (2017) The Genetic Landscape of Familial Congenital Hydrocephalus. Annals of Neurology, 81, 890-897. https://doi.org/10.1002/ana.24964
[83]
Jones, H.C. and Bucknall, R.M. (1988) Inherited Prenatal Hydrocephalus in the H-Tx Rat: A Morphological Study. Neuropathology and Applied Neurobiology, 14, 263-274. https://doi.org/10.1111/j.1365-2990.1988.tb00887.x
[84]
Kohn, D.F., Chinookoswong, N. and Chou, S.M. (1981) A New Model of Congenital Hydrocephalus in the Rat. Acta Neuropathologicaologica (Berl), 54, 211-218.
https://doi.org/10.1007/BF00687744
[85]
Jones, H.C., Carter, B.J. and Morel, L. (2003) Characteristics of Hydrocephalus Expression in the LEW/Jms Rat Strain with Inherited Disease. Child’s Nervous System, 19, 11-18.
[86]
Sasaki, S., Goto, H., Nagano, H., Furuya, K., Omata, Y., Kanazawa, K., Suzuki, K., Sudo, K. and Collmann, H. (1983) Congenital Hydrocephalus Revealed in the Inbred Rat, LEW/Jms. Neurosurgery, 13, 548-554.
https://doi.org/10.1227/00006123-198311000-00011
[87]
Mashayekhi, F. (2012) The Importance of Cerebrospinal Fluid in Cerebral Cortical Development. Iranian Journal of Science & Technology, A4, 493-499.
[88]
Mashayekhi, F., Bannister, C.M. and Miyan, J.A. (2000) Possible Role of CSF in a Developmental Abnormality Associated with Early-Onset Hydrocephalus. European Journal of Pediatric Surgery, 10, 39-40.
[89]
Mashayekhi, F., Bannister, C.M. and Miyan, J.A. (2001) Failure in Cell Proliferation in the Germinal Epithelium of the Htx Rats. European Journal of Pediatric Surgery, 11, 557-559.
[90]
Mashayekhi, F., Draper, C.E., Bannister, C.M., Pourghasem, M., Owen-Lynch, P.J. and Miyan, J.A. (2002) Deficient Cortical Development in the Hydrocephalic Texas (H-Tx) Rat: A Role for CSF. Brain, 125, 1859-1874.
https://doi.org/10.1093/brain/awf182
[91]
Miyan, J.A., Khan, M.I., Kawarada, Y., Sugiyama, T. and Bannister, C.M. (1998) Cell Death in the Brain of the HTx Rat. European Journal of Pediatric Surgery, 8, 43-48. https://doi.org/10.1055/s-2008-1071253
[92]
Owen-Lynch, P.J., Draper, C.E., Mashayekhi, F., Bannister, C.M. and Miyan, J.A. (2003) Defective Cell Cycle Control Underlies Abnormal Cortical Development in the Hydrocephalic Texas Rat. Brain, 126, 623-631.
https://doi.org/10.1093/brain/awg058
[93]
Vetsika, E.K., Bannister, C.M., Buckle, A.M. and Miyan, J.A. (1999) The Effects of CSF Blockage in Early-Onset Hydrocephalus on the Activity of the Germinal Epithelium. European Journal of Pediatric Surgery, 9, 43-44.
[94]
Jones, H.C., Harris, N.G., Rocca, J.R. and Andersohn, R.W. (2000a) Progressive Tissue Injury in Infantile Hydrocephalus and Prevention/Reversal with Shunt Treatment. Neurological Research, 22, 89-96.
https://doi.org/10.1080/01616412.2000.11741041
[95]
Cains, S., Shepherd, A., Nabiuni, M., Owen-Lynch, P.J. and Miyan, J. (2009) Addressing a Folate Imbalance in Fetal Cerebrospinal Fluid Can Decrease the Incidence of Congenital Hydrocephalus. Journal of Neuropathology & Experimental Neurology, 68, 404-416. https://doi.org/10.1097/NEN.0b013e31819e64a7
[96]
Cai, X., McGraw, G., Pattisapu, J.V., von Kalm, L., Willingham, S., Socci, D. and Gibson, J.S. (2000) Hydrocephalus in the H-Tx Rat: A Monogenic Disease? Experimental Neurology, 163, 131-135. https://doi.org/10.1006/exnr.1999.7301
[97]
Jones, H.C., Lopman, B.A., Jones, T.W., Carter, B.J., Depelteau, J.S. and Morel, L. (2000b) The Expression of Inherited Hydrocephalus in H-Tx Rats. Child’s Nervous System, 16, 578-584. https://doi.org/10.1007/s003810000330
[98]
Jones, H.C., Carter, B.J., Depelteau, J.S., Roman, M. and Morel, L. (2001) Chromosomal Linkage Associated with Disease Severity in the Hydrocephalic H-Tx Rat. Behavior Genetics, 31, 101-111. https://doi.org/10.1023/A:1010266110762
[99]
Hawkins, D., Bowers, T.M., Bannister, C.M. and Miyan, J.A. (1997) The Functional Outcome of Shunting H-Tx Rat Pups at Different Ages. European Journal of Pediatric Surgery, 7, 31-34. https://doi.org/10.1055/s-2008-1071206
[100]
Dahme, M., Bartsch, U., Martini, R., Anliker, B., Schachner, M. and Mantel, N. (1997) Disruption of the Mouse L1 Gene Leads to Malformations of the Nervous System. Nature Genetics, 17, 346-349. https://doi.org/10.1038/ng1197-346
[101]
Demyanenko, G.P., Tsai, A.Y. and Maness, P.F. (1999) Abnormalities in Neuronal Process Extension, Hippocampal Development, and the Ventricular System of L1 Knockout Mice. Journal of Neuroscience, 19, 4907-4920.
[102]
Gruneberg, H. (1943) Congenital Hydrocephalus in the Mouse; A Case of Spurious Pleiotropism. Journal of Genetics, 45, 1-21. https://doi.org/10.1007/BF02982770
[103]
Berry, R.J. (1961) The Inheritance and Pathogenesis of Hydrocephalus-3 in the Mouse. The Journal of Pathology and Bacteriology, 81, 157-167.
https://doi.org/10.1002/path.1700810119
[104]
Lawson, R.F. and Raimondi, A.J. (1973) Hydrocephalus-3, a Murine Mutant: I. Alterations in Fine Structure of Choroid Plexus and Ependyma. Surgical Neurology, 1, 115-128.
[105]
Davy, B.E. and Robinson, M.L. (2003) Congenital Hydrocephalus in hy3 Mice Is Caused by a Frameshift Mutation in Hydin, a Large Novel Gene. Human Molecular Genetics, 12, 1163-1170. https://doi.org/10.1093/hmg/ddg122
[106]
Dawe, H.R., Shaw, M.K., Farr, H. and Gull, K. (2007) The Hydrocephalus Inducing Gene Product, Hydin, Positions Axonemal Central Pair Microtubules. BMC Biology, 5, 33. https://doi.org/10.1186/1741-7007-5-33
[107]
Bronson, R.T. and Lane, P.W. (1990) Hydrocephalus with Hop Gait (hyh): A New Mutation on Chromosome 7 in the Mouse. Brain Research. Developmental Brain Research, 54, 131-136. https://doi.org/10.1016/0165-3806(90)90073-8
[108]
Chae, T.H., Kim, S., Marz, K.E., Hanson, P.I. and Walsh, C.A. (2004) The hyh Mutation Uncovers Roles for Alpha Snap in Apical Protein Localization and Control of Neural Cell Fate. Nature Genetics, 36, 264-270. https://doi.org/10.1038/ng1302
[109]
Hong, H.K., Chakravarti, A. and Takahashi, J.S. (2004) The Gene for Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Alpha Is Mutated in Hydrocephaly with Hop Gait (hyh) Mice. Proceedings of the National Academy of Sciences, 101, 1748-1753. https://doi.org/10.1073/pnas.0308268100
[110]
Jiménez, A.J., García-Verdugo, J.M., González, C.A., Bátiz, L.F., Rodríguez-Pérez, L.M., Páez, P., Soriano-Navarro, M., Roales-Buján, R., Rivera, P., Rodríguez, S., Rodríguez, E.M. and Pérez-Fígares, J.M. (2009) Disruption of the Neurogenic Niche in the Subventricular Zone of Postnatal Hydrocephalic hyh Mice. Journal of Neuropathology & Experimental Neurology, 68, 1006-1020.
https://doi.org/10.1097/NEN.0b013e3181b44a5a
[111]
Bruni, J.E., Del Bigio, M.R., Cardoso, E.R. and Persaud, T.V.N. (1988a) Neuropathology of Congenital Hydrocephalus in the SUMS/NP Mouse. Acta Neurochirurgica (Wien), 92, 118-122. https://doi.org/10.1007/BF01401981
[112]
Jones, H.C., Dack S. and Ellis, C. (1987) Morphological Aspects of the Development of Hydrocephalus in a Mouse Mutant (SUMS/NP). Acta Neuropathologicaologica, 72, 268-276. https://doi.org/10.1007/BF00691100
[113]
Bryan, J.H.D., Hughes, R.L. and Bates, T.J. (1977) Brain Development in the Hydrocephalic-Polydactyl, a Recessive Pleiotropic Mutant in the Mouse. Virchows Archiv A, 374, 205-214. https://doi.org/10.1007/BF00427115
[114]
Hollander, W.F. (1976) Hydrocephalic-Polydactyl, a Recessive Pleiotropic Mutant in the Mouse, and Its Location in Chromosome 6. Iowa State Journal of Research, 51, 13-23.
[115]
Kume, T., Deng, K.Y., Winfrey, V., Gould, D.B., Walter, M.A. and Hogan, B.L. (1998) The Forkhead/Winged Helix Gene Mf1 Is Disrupted in the Pleiotropic Mouse Mutation Congenital Hydrocephalus. Cell, 93, 985-996.
https://doi.org/10.1016/S0092-8674(00)81204-0
[116]
Hollander, W.F. (1966) Hydrocephalic-Polydactyl, a Recessive Pleiotropic Mutant in the Mouse. American Zoologist, 6, 588-589.
[117]
Bruni, J.E., Del Bigio, M.R., Cardoso, E.R. and Persaud, T.V.N. (1988b) Hereditary Hydrocephalus in Laboratory Animals and Humans. Journal of Experimental Pathology, 35, 239-249. https://doi.org/10.1016/S0232-1513(88)80094-X
[118]
McMullen, A.B., Baidwan, G.S. and McCarthy, K.D. (2012) Morphological and Behavioral Changes in the Pathogenesis of a Novel Mouse Model of Communicating Hydrocephalus. PLoS ONE, 7, e30159.
https://doi.org/10.1371/journal.pone.0030159
[119]
Sweger, E.J., Casper, K.B., Scearce-Levie, K., Conklin, B.R. and McCarthy, K.D. (2007) Development of Hydrocephalus in Mice Expressing the G1-Coupled GPCR Ro1 RASSL Receptor in Astrocytes. Journal of Neuroscience, 27, 2309-2317.
https://doi.org/10.1523/JNEUROSCI.4565-06.2007
[120]
McAllister, J.P., II (2012) Pathophysiology of Congenital and Neonatal Hydrocephalus. Seminars in Fetal & Neonatal Medicine, 17, 285-294.
https://doi.org/10.1016/j.siny.2012.06.004