全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Definition of Density in General Relativity

DOI: 10.4236/ijaa.2017.74025, PP. 303-312

Keywords: Cosmology, Gravitational Collapse, Black Holes

Full-Text   Cite this paper   Add to My Lib

Abstract:

According to general relativity the geometry of space depends on the distribution of matter or energy fields. The relation between the local geometrical parameters and the volume enclosed in given limits varies with the distribution of matter. Thus properties like particle number, mass or energy density, defined in the Euclidean tangent space, cannot be integrated to give conserved integral data like total number, mass or energy. To obtain integral conservation, a correction term must be added to account for the curvature of space. For energy this correction term is the equivalent of potential energy in Newtonian gravitation. With this correction the formation of black holes in the sense of singularities by gravitational collapse does no longer occur and the so called dark energy finds its natural explanation as potential energy of matter itself.

References

[1]  Wald, R.M. (1984) General Relativity. University of Chicago Press, Chicago.
https://doi.org/10.7208/chicago/9780226870373.001.0001
[2]  Hawking, S.W. and Ellis, G.F.R. (1973) The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511524646
[3]  Schwarzschild, K. (1916) Sitzungsberichte der Koeniglich-Preussischen Akademie der Wissenschaften. Reimer, Berlin, 189-196.
[4]  Oppenheimer, J.R. and Volkoff, G.M. (1939) On Massive Neutron Cores. Physical Revie, 55, 374.
https://doi.org/10.1103/PhysRev.55.374
[5]  Penrose, R. (1965) Gravitational Collapse and Space-Time Singularities. Physical Review Letters, 14, 57.
https://doi.org/10.1103/PhysRevLett.14.57

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133