全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Three-Dimensional Numerical Simulation of Stably Stratified Flows over a Two-Dimensional Hill

DOI: 10.4236/ojfd.2017.74039, PP. 579-595

Keywords: Finite-Difference Method, Stably Stratified Flows, Two-Dimensional Hill

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stably stratified flows over a two-dimensional hill are investigated in a channel of finite depth using a three-dimensional direct numerical simulation (DNS). The present study follows onto our previous two-dimensional DNS studies of stably stratified flows over a hill in a channel of finite depth and provides a more realistic simulation of atmospheric flows than our previous studies. A hill with a constant cross-section in the spanwise (y) direction is placed in a 3-D computational domain. As in the previous 2-D simulations, to avoid the effect of the ground boundary layer that develops upstream of the hill, no-slip conditions are imposed only on the hill surface and the surface downstream of the hill; slip conditions are imposed on the surface upstream of the hill. The simulated 3-D flows are discussed by comparing them to the simulated 2-D flows with a focus on the effect of the stable stratification on the non-periodic separation and reattachment of the flow behind the hill. In neutral (K = 0, where K is a non-dimensional stability parameter) and weakly stable (K = 0.8) conditions, 3-D flows over a hill differ clearly from 2-D flows over a hill mainly because of the three-dimensionality of the flow, that is the development of a spanwise flow component in the 3-D flows. In highly stable conditions (K = 1, 1.3), long-wavelength lee waves develop downstream of the hill in both 2-D and 3-D flows, and the behaviors of the 2-D and 3-D flows are similar in the vicinity of the hill. In other words, the spanwise component of the 3-D flows is strongly suppressed in highly stable conditions, and the flow in the vicinity of the hill becomes approximately two-dimensional in the x and z directions.

References

[1]  Paisley, M.F., Castro, I.P. and Rockliff, N.J. (1994) Steady and Unsteady Computations of Strongly Stratified Flows over a Vertical Barrier. In: Stably Stratified Flows: Flow and Dispersion over Topography, Clarendon Oxford University Press, Oxford, 39-59.
[2]  Snyder, W.H. (1985) Fluid Modeling of Pollutant Transport and Diffusion in Stably Stratified Flows over Complex Terrain. Annual Review of Fluid Mechanics, 17, 239-266.
https://doi.org/10.1146/annurev.fl.17.010185.001323
[3]  Uchida, T. and Ohya, Y. (1997) A Numerical Study of Stably Stratified Flows over a Two-Dimensional Hill—Part. I Free-Slip Condition on the Ground. Journal of Wind Engineering & Industrial Aerodynamics, 67 & 68, 493-506.
[4]  Uchida, T. and Ohya, Y. (1998) Unsteady Characteristics of Stably Stratified Flows past a Two-Dimensional Hill in a Channel of Finite Depth. Journal of Japan Society of Fluid Mechanics, 17, 45-56.
[5]  Uchida, T. and Ohya, Y. (1999) Unsteady Characteristics of Stably Stratified Flows past a Two-Dimensional Hill in a Channel of Finite Depth—Part II. Effect of Stable Stratification on the Separated-Reattached Flow. Journal of Japan Society of Fluid Mechanics, 18, 308-320.
[6]  Uchida, T. and Ohya, Y. (1998) Large Eddy Simulation of Stably Stratified Flows past a Two-Dimensional Hill in a Channel of Finite Depth. Journal of Applied Mechanics, JSCE, 1, 615-624.
[7]  Uchida, T. and Ohya, Y. (1999) Numerical Study of Topography-Induced Local Severe Winds in Stably Stratified Fluid. Journal of Applied Mechanics, JSCE, 2, 583-592.
[8]  Uchida, T. and Ohya, Y. (2000) Two-Dimensional Numerical Simulation of Stably-Stratified Flows past a Cosine-Shaped Hill—Effect of the Grid Resolution and the Numerical Method. Journal of Applied Mechanics, JSCE, 3, 729-736.
[9]  Uchida, T. and Ohya, Y. (2001) Numerical Investigation of Local Severe Winds Induced by Lee—Wave Breaking over Topography in Stably Stratified Flows. Journal of Applied Mechanics, JSCE, 4, 655-664.
[10]  Uchida, T. and Ohya, Y. (2001) Numerical Study of Stably Stratified Flows over a Two-Dimensional Hill in a Channel of Finite Depth. Fluid Dynamics Research, 29, 227-250.
https://doi.org/10.1016/S0169-5983(01)00025-9
[11]  Ohya, Y., Uchida, T. and Nagai, T. (2013) Near Wake of a Horizontal Circular Cylinder in Stably Stratified Flows. Open Journal of Fluid Dynamics, 3, 311-320.
https://doi.org/10.4236/ojfd.2013.34038
[12]  Lilly, D.K. (1978) A Severe Downslope Windstorm and Aircraft Turbulence Induced by a Mountain Wave. Journal of the Atmospheric Sciences, 35, 59-77.
https://doi.org/10.1175/1520-0469(1978)035<0059:ASDWAA>2.0.CO;2
[13]  Saito, K. (1998) Wind Engineers. JAWE, 75, 79-84.
[14]  Katsura, J. (1999) Wind Engineers. JAWE, 78, 63-66.
[15]  Kim, J. and Moin, P. (1985) Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations. Journal of Computational Physics, 59, 308-323.
https://doi.org/10.1016/0021-9991(85)90148-2
[16]  Kawamura, T., et al. (1986) Computation of High Reynolds Number Flow around A Circular Cylinder with Surface Roughness. Fluid Dynamics Research, 1, 145-162.
https://doi.org/10.1016/0169-5983(86)90014-6
[17]  Kawamura, T., et al. (1997) High-Order Finite-Difference Method for Incompressible Flows using Collocated Grid System. Transactions of the Japan Society of Mechanical Engineers, B 63, 3247-3254.
https://doi.org/10.1299/kikaib.63.3247
[18]  Uchida, T. and Ohya, Y. (2002) Numerical Investigation of an Unsteady Vortex Shedding from a Two-Dimensional Steep Ridge. Journal of Applied Mechanics, JSCE, 5, 735-742.
[19]  Izumi, H., et al. (1994) Three-Dimensional Flow Analysis around a Circular Cylinder: 1st Report, In the Case of a Stationary Circular Cylinder. Transactions of the Japan Society of Mechanical Engineers, B 63, 3797-3804.
https://doi.org/10.1299/kikaib.60.3797
[20]  Suzuki, M. and Kuwahara, K. (1992) Stratified Flow past a Bell-Shaped Hill. Fluid Dynamics Research, 9, 1-18.
https://doi.org/10.1016/0169-5983(92)90055-2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133