We investigate the entanglement dynamics of an anisotropic two-qubit Heisenberg XYZ system with Dzyaloshinskii-Moriya (DM) interaction in the presence of both inhomogeneity of the external magnetic field b and intrinsic decoherence which has been studied. The behavior of quantum correlation and the degree of entanglement between the two subsystems is quantified by using measurement-induced disturbance (MID), negativity (N) and Quantum Discord (QD), respectively. It is shown that in the presence of an inhomogeneity external magnetic field occur the phenomena of long-lived entanglement. It is found that the initial state is the essential role in the time evolution of the entanglement.
References
[1]
Barnett, S. (2009) Quantum Information. Oxford University Press, Oxford, 72.
[2]
Sagawa, T. (2012) Introduction. In: Thermodynamics of Information Processing in Small Systems, Springer, Tokyo, 1-7. https://doi.org/10.1007/978-4-431-54168-4_1
[3]
Giraud, O., Georgeot, B. and Shepelyansky, D.L. (2005) Quantum Computing of Delocalization in Small-World Networks. Physical Review E, 72, Article ID: 036203. https://doi.org/10.1103/PhysRevE.72.036203
[4]
Metwally, N. (2011) Entangled Network and Quantum Communication. Physics Letters A, 375, 4268-4273. https://doi.org/10.1016/j.physleta.2011.10.026
[5]
Metwally, N. (2010) Information Loss in Local Dissipation Environments. International Journal of Theoretical Physics, 49, 1571-1579. https://doi.org/10.1007/s10773-010-0339-9
[6]
Bennett, C.H., DiVincenzo, D.P., Smolin, J.A. and Wootters, W.K. (1996) Mixed-State Entanglement and Quantum Error Correction. Physical Review A, 54, 3824-3851. https://doi.org/10.1103/PhysRevA.54.3824
[7]
Huang, P., Zhu, J., He, G. and Zeng, G. (2012) Study on the Security of Discrete-Variable Quantum Key Distribution over Non-Markovian Channels. Journal of Physics B, 45, Article ID: 135501. https://doi.org/10.1088/0953-4075/45/13/135501
[8]
Hussain, M.I. and Ikram, M. (2012) Entanglement Engineering of a Close Bipartite Atomic System in a Dissipative Environment. Journal of Physics B, 45, Article ID: 115503. https://doi.org/10.1088/0953-4075/45/11/115503
[9]
Yu, T. and Eberly, J.H. (2006) Sudden Death of Entanglement: Classical Noise Effects. Optics Communications, 264, 393-397. https://doi.org/10.1016/j.optcom.2006.01.061
[10]
Yu, T. and Eberly, J.H. (2004) Finite-Time Disentanglement via Spontaneous Emission. Physical Review Letters, 93, Article ID: 140404. https://doi.org/10.1103/PhysRevLett.93.140404
[11]
Ban, M., Kitajima, S. and Shibata, F. (2005) Masashi Ban and Sachiko Kitajima and Fumiaki Shibata. Journal of Physics A: Mathematical and General, 38, 4235. https://doi.org/10.1088/0305-4470/38/19/012
[12]
Milburn, G.J. (1991) Intrinsic Decoherence in Quantum Mechanics. Physical Review A, 44, 5401-5406. https://doi.org/10.1103/PhysRevA.44.5401
[13]
Klionsky, D.J., Abdelmohsen, K., Zorzano, A. and Zughaier, S.M. (1991) Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy. Autophagy, 12, 1-222. https://doi.org/10.1080/15548627.2015.1100356
[14]
Jurez Amaro, R., Escudero Jimnez, J.L. and Moya Cessa, H. (2009) Intrinsic Decoherence in the Interaction of Two Fields with a Twolevel Atom. Annalen der Physik, 18, 454-458. https://doi.org/10.1002/andp.200810356
[15]
Guo, J. and Song, H. (2008) Effects of Inhomogeneous Magnetic Field on Entanglement and Teleportation in a Two-Qubit Heisenberg XXZ Chain with Intrinsic Decoherence. Physica Scripta, 78, Article ID: 045002. https://stacks.iop.org/1402-4896/78/i=4/a=045002 https://doi.org/10.1088/0031-8949/78/04/045002
[16]
Zidan, N. (2013) Quantum Teleportation via Two-Qubit Heisenberg XYZ Chain. Canadian Journal of Physics, 92, 406-410. https://doi.org/10.1139/cjp-2013-0404
[17]
Zhou, L., Song, H.S., Guo, Y.Q. and Li, C. (2003) Enhanced Thermal Entanglement in an Anisotropic Heisenberg XYZ Chain. Physical Review A, 68, Article ID: 024301. https://doi.org/10.1103/PhysRevA.68.024301
[18]
Arnesen, M.C., Bose, S. and Vedral, V. (2001) Enhanced Thermal Entanglement in an Anisotropic Heisenberg XYZ Chain. Physical Review Letters, 87, Article ID: 017901. https://doi.org/10.1103/PhysRevLett.87.017901
[19]
Wang, X. (2001) Enhanced Thermal Entanglement in an Anisotropic Heisenberg XYZ Chain. Physical Review A, 64, Article ID: 012313. https://doi.org/10.1103/PhysRevA.64.012313
[20]
Werlang, T. and Rigolin, G. (2010) Thermal and Magnetic Quantum Discord in Heisenberg Models. Physical Review A, 81, Article ID: 044101. https://doi.org/10.1103/PhysRevA.81.044101
[21]
Werlang, T., Rigolin, G., Trippe, C. and Ribeiro, G.A.P. (2010) T Quantum Correlations in Spin Chains at Finite Temperatures and Quantum Phase Transitions. Physical Review Letters, 105, Article ID: 095702. https://doi.org/10.1103/PhysRevLett.105.095702
[22]
Mi, Y., Zhang, J., Song, H. and Guo, J. (2011) Thermal Quantum Discord of Spins in an Inhomogeneous Magnetic Field. Journal of Physics B: Atomic, Molecular and Optical Physics, 44, Article ID: 065504. https://stacks.iop.org/0953-4075/44/i=6/a=065504 https://doi.org/10.1088/0953-4075/44/6/065504
[23]
Zidan, N. (2016) Dynamics of Correlations in the Presences of Intrinsic Decoherence. International Journal of Theoretical Physics, 55, 1274-1284. https://doi.org/10.1007/s10773-015-2768-y
[24]
Luo, S. (2005) Entanglement Properties of a Two-Qubit, Mixed-Spin, Heisenberg Chain under a Nonuniform Magnetic Field. Physical Review A, 72, Article ID: 042110. https://doi.org/10.1103/PhysRevA.72.042110
[25]
Song, L. and Yang, G. (2014) Entanglement and Measurement-Induced Disturbance about Two-Qubit Heisenberg XYZ Model. International Journal of Theoretical Physics, 53, 1985-1992. https://doi.org/10.1007/s10773-014-2005-0