All monomials with t-value ≤9 in Canonical basis of quantum group for type D4 are determined in this paper.
References
[1]
Bedard, R. (2004) On Tight Monomials in Quantized Enveloping Algebras. Representation Theory, 8, 290-327. https://doi.org/10.1090/S1088-4165-04-00199-2
[2]
Blouin, D., Dean, A., Denver, K. and Pershall, K. (1995) Algorithms for Quadratic Forms.
[3]
Deng, B.M. and Du, J. (2010) Tight Monomials and Monomial Basis Property. Journal of Algebra, 324, 3355-3377.
[4]
Drinfel’d, V.G. (1985) Hopf Algebras and the Quantum Yang-Baxter Equation. Soviet Mathematics Doklady, 32, 254-258.
[5]
Hu, Y.W. and Geng, Y.J. (2015) Monomials with t-value ≤ 6 in Canonical Basis of Quantized Enveloping Algebra of Type . Chinese Quarterly Journal of Mathematics, 30, 462-474.
[6]
Hu, Y.W., Li, G.W. and Wang, J. (2015) Tight Monomials in Quantum Group for Type with . Advances in Linear Algebra & Matrix Theory, 5, 63-75. https://doi.org/10.4236/alamt.2015.53007
[7]
Hu, Y.W., Ye, J.C. and Yue, X.Q. (2003) Canonical Basis of Type (I)-Monomial Elements. Journal of Algebra, 263, 228-245.
[8]
Hu, Y.W. and Ye, J.C. (2005) Canonical Bases of Type (II)-Polynomial Elements in One Variable. Communications in Algebra, 33, 3855-3877. https://doi.org/10.1080/00927870500261033
[9]
Jimbo, M. (1985) A q-Difference Analogue of and the Yang-Baxter Equation. Letters in Mathematical Physics, 10, 63-69. https://doi.org/10.1007/BF00704588
[10]
Li, X.C. and Hu, Y.W. (2012) Ploynomical Elements in Canonical Basis of Type B with Two-Dimensional Support for (I). Algebra Colloquium, 19, 117-136. https://doi.org/10.1142/S1005386712000089
[11]
Lusztig, G. (1990) Canonical Bases Arising from Quantized Enveloping Algebras. Journal of the American Mathematical Society, 3, 447-498. https://doi.org/10.1090/S0894-0347-1990-1035415-6
[12]
Lusztig, G. (1992) Introduction to Quantized Enveloping Algebras. Progress in Mathematics, 105, 49-65. https://doi.org/10.1007/978-1-4612-2978-0_3
[13]
Lusztig, G. (1993) Tight Monomials in Quantized Enveloping Algebras. In: Joseph, A. and Schnider, S., Eds., Quantum Deformations of Algebras and Their Representations, Israel Math. Conf. Proc., Vol. 7, 117-132.
[14]
Marsh, R. (1998) More Tight Monomials in Quantized Enveloping Algebras. Journal of Algebra, 204, 711-732. https://doi.org/10.1006/jabr.1997.7370
[15]
Reineke, M. (2001) Monomials in Canonical Bases of Quantum Groups and Quadratic Forms. Journal of Pure and Applied Algebra, 157, 301-309.
[16]
Wang, X.M. (2010) Tight Monomials for Type and . Communications in Algebra, 38, 3597-3615. https://doi.org/10.1080/00927870903200919
[17]
Xi, N.H. (1999) Canonical Basis for Type . Communications in Algebra, 27, 5703-5710. https://doi.org/10.1080/00927879908826784
[18]
Xi, N.H. (1999) Canonical Basis for Type . Journal of Algebra, 214, 8-21. https://doi.org/10.1006/jabr.1998.7688