Organic-inorganic hybrid perovskite materials have attracted significant research efforts because of their outstanding properties. Meanwhile the crystallization of organic-inorganic hybrid perovskite materials can significantly influence the films quality. Here, we research the influence of the characteristics of PbI2 thin film on final perovskite films and the mechanisms of film formation based on the two-step sequential deposition method. We found that the characteristics of PbI2 thin film, such as the grain size, the grain shape, the surface roughness and the film densification, have significant effects on the final perovskite films due to different film crystallization process. According to the analysis on the characteristics of the perovskite films obtained from different PbI2precursor, we suggested that the formation of perovskite film begins from the PbI2 crystals expanding when they are converted to MAPbI3 perovskite by migration of MA+ cations from the grain boundaries.
References
[1]
Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J. and Seok, S.I. (2015) Compositional Engineering of Perovskite Materials for High Performance Solar Cells. Nature, 517, 476-480. https://doi.org/10.1038/nature14133
[2]
Huang, F.Z., Dkhissi, Y., Huang, W.C., Xiao, M.D., Benesperi, I., Rubanov, S., Zhu, Y., Lin, X.F., Jiang, L.C., Zhou, Y.C., Gray-Weale, A., Etheridge, J., McNeill, C.R., Caruso, R.A., Bach, U., Spiccia, L. and Cheng, Y.-B. (2014) Gas-Assisted Preparation of Lead Iodide Perovskite Films Consisting of a Monolayer of Single Crystalline Grains for High Efficiency Planar Solar Cells. Nano Energy, 10, 10-18.
https://doi.org/10.1016/j.nanoen.2014.08.015
[3]
Goetzberger, A. and Hebling, C. (2000) Photovoltaic Materials, Past, Present, Future. Solar Energy Materials and Solar Cells, 62, 1-19.
https://doi.org/10.1016/S0927-0248(99)00131-2
[4]
Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D. (2015) Solar Cell Efficiency Tables. Progress in Photovoltaics: Research and Applications, 23, 1-9. https://doi.org/10.1002/pip.2573
[5]
Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T. (2009) Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 131, 6050-6051. https://doi.org/10.1021/ja809598r
[6]
De Wolf, S., Holovsky, J., Moon, S.-J., Loper, P., Niesen, B., Ledinsky, M., Haug, F.-J., Yum, J.-H. and Ballif, C. (2014) Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters, 5, 1035-1039. https://doi.org/10.1021/jz500279b
[7]
De Wolf, S., Holovsky, J., Moon, S.-J., Loper, P., Niesen, B., Ledinsky, M., Haug, F.-J., Yum, J.-H. and Ballif, C. (2014) Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges. The Journal of Physical Chemistry Letters, 5, 2501-2505. https://doi.org/10.1021/jz501332v
[8]
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A. and Snaith, H.J. (2013) Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 342, 341-344. https://doi.org/10.1126/science.1243982
[9]
Xing, G.C., Mathews, N., Sun, S.Y., Lim, S.S., Lam, Y.M., Gratzel, M., Mhaisalkar, S. and Sum, T.C. (2013) Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342, 344-347.
https://doi.org/10.1126/science.1243167
[10]
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S. and Seok, S.I. (2014) Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells. Nature Materials, 13, 897-903. https://doi.org/10.1038/nmat4014
[11]
Zhou, H.P., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z.R., You, J.B., Liu, Y.S. and Yang, Y. (2014) Interface Engineering of Highly Efficient Perovskite Solar Cells. Science, 345, 542-546. https://doi.org/10.1126/science.1254050
[12]
Liu, M.Z., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature, 501, 395-398.
https://doi.org/10.1038/nature12509
[13]
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.S., Wang, H.H., Liu, Y., Li, G. and Yang, Y. (2014) Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 136, 622-625.
https://doi.org/10.1021/ja411509g
[14]
Gao, C., Liu, J., Liao, C., Ye, Q., Zhang, Y., He, X., Guo, X., Mei, J. and Lau, W. (2015) Formation of Organic-Inorganic Mixed Halide Perovskite Films by Thermal Evaporation of PbCl2 and CH3NH3I Compounds. RSC Advances, 5, 26175-26180.
https://doi.org/10.1039/C4RA17316C
[15]
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y. and Huang, J. (2014) Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic Device Efficiency Enhancement. Advanced Materials, 26, 6503-6509.
https://doi.org/10.1002/adma.201401685
[16]
Liang, P.W., Liao, C.Y., Chueh, C.C., Zuo, F., Williams, S.T., Xin, X.K., Lin, J. and Jen, A.K. (2014) Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Advanced Materials, 26, 3748-3754. https://doi.org/10.1002/adma.201400231
[17]
Xie, F.X., Zhang, D., Su, H., Ren, X., Wong, K.S., Gratzel, M., and Choy, W.C. (2015) Vacuum-Assisted Thermal Annealing of CH3NH3PbI3 for Highly Stable and Efficient Perovskite Solar Cells. ACS Nano, 9, 639-646.
https://doi.org/10.1021/nn505978r
[18]
Dualeh, A., Tetreault, N., Moehl, T., Gao, P., Nazeeruddin, M.K., Gratzel, M. (2014) Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Perovskite Solid-State Solar Cell. Advanced Functional Materials, 24, 3250-3258.
https://doi.org/10.1002/adfm.201304022
[19]
Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J. (2013) Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy & Environmental Science, 6, 1739-1743. https://doi.org/10.1039/c3ee40810h
[20]
Liu, D., Gangishetty, M.K. and Kelly, T.L. (2014) Effect of CH3NH3PbI3 Thickness on Device Efficiency in Planar Heterojunction Perovskite Solar Cells. Journal of Materials Chemistry A, 19873-19881. https://doi.org/10.1039/C4TA02637C
[21]
Schlipf, J., Docampo, P., Schaffer, C.J., Korstgens, V., Bie?mann, L., Hanusch, F., Giesbrecht, N., Bernstorff, S., Bein, T. and Mulller-Buschbaum, P. (2015) A Closer Look into Two-Step Perovskite Conversion with X-Ray Scattering. The Journal of Physical Chemistry Letters, 6, 1265-1269.
https://doi.org/10.1021/acs.jpclett.5b00329
[22]
Wu, Y.X., Li, J., Xu, J., Du, Y.Y., Huang, L.K., Ni, J., Cai, H.K. and Zhang, J.J. (2016) Organic-Inorganic Hybrid CH3NH3PbI3 Perovskite Materials as Channels in Thin-Film Field-Effect Transistors. RSC Advances, 6, 16243-16249.
https://doi.org/10.1039/C5RA24154E