Stage-Specific Changes on Plasmodium yoelii yoelii Following Treatment with Hintonia latiflora Stem Bark Extract and Phytochemical-Antioxidant Evaluation
Malaria endemic zones are mostly located on third world countries, where antimalarials are not easily found or patients cannot afford them, and in consequence, they must turn toward natural products or phytomedicines. In the present study, the effect of Hinotnia latiflora (Hl) methanolic stem bark extract (HlMeOHe) on the ultrastructure of the asexual intraerythrocytic stages of Plasmodium yoelii yoelii (Pyy) after a Peters’ four-day oral treatment was assessed by transmission electron microscopy (TEM), as well as the parasite development on blood smears, analyzed by light microscopy. Likewise, extract was subjected to qualitative tests adopting standard procedures for identification of phytoconstituents; its antioxidant activity was evaluated according to the method of Brand-Williams and by the radical cation decolorization assay. Results showed higher percentage of rings and lower percentage of trophozoites and schizonts in the treated animals, in comparison with those of the control groups, which demonstrated lower percentage of rings and trophozoites, and schizonts in higher number. Images of TEM showed in some treated parasites, mild parasite membranes, organelle swelling and ribosomal depletion. The phytochemical profile demonstrated that the extract contains alkaloids, tannis, steroids, terpenoids, flavonoids, phenolics and saponins. The obtained values of the half maximal inhibitory concentration (IC50) in μg/mL, for both antioxidant assays were of 423.83 and 202.95 respectively. It is concluded that HlMeOHe altered the development of the intraerythrocytic asexual stages and the ultrastructure of Pyy, and due to its phytochemical constituents, showed an in vitro antioxidant activity.
References
[1]
Willcox, M. (2011) Improved Traditional Phytomedicines in Current Use for the Clinical Treatment of Malaria. Planta Medica, 77, 662-671.
https://doi.org/10.1055/s-0030-1250548
[2]
WHO (2015) Guidelines for the Treatment of Malaria, 2nd Edition. World Health Organization, Geneva. [Internet] [cited 2017 June 26]; Available from
http://www.who.int/malaria/publications/atoz/9789241549127/en/
[3]
WHO Monographs (2009) Medicinal Plants Commonly Used in the Newly Independent States (NIS). World Health Organization [Internet]. [Cited 2017 June 26]; Available from http://apps.who.int/medicinedocs/es/m/abstract/Js17534en/
[4]
Biblioteca Digital de la Medicina Tradicional Mexicana? [Internet]. Mexico [update 2009; cited 2017 June 2017]. Avilable from
http://www.medicinatradicionalmexicana.unam.mx/index.php
[5]
Bruguera, M., Herrera, S., Lázaro, E., Madurga, M., Navarro, M. and de, Abajo, F. (2017) Hepatitis aguda asociada al consumo de copalchi. A propósito de 5 casos. Gastroenterología y Hepatología, 30, 66-68. https://doi.org/10.1157/13099265
[6]
Argotte, R.R., Ramírez, A.G., Rodríguez, G.M., Ovilla, M.M., Lanz, M.H., Rodríguez, M.H., González, C.M. and Alvarez, L. (2006) Antimalarial 4-Phenylcoumarins from the Stem Bark of Hintonia latiflora. Journal of Natural Products, 69, 1442-1444.
https://doi.org/10.1021/np060233p
[7]
Rivera, N., López, Y., Rojas, M., Fortoul, T., Reynada, D., Reyes, J., et al. (2014) Antimalarial Efficacy, Cytotoxicity, and Genotoxicity of Methanolic Stem Bark Extract from Hintonia latiflora in a Plasmodium yoelii yoelii Lethal Murine Malaria Model. Parasitology Research, 113, 1529-1536. https://doi.org/10.1007/s00436-014-3797-9
[8]
Rivera, N., Marrero, P.Y., Arán, V.J., Martínez, C. and Malagón, F. (2013) Biological Assay of a Novel Quinoxalinone with Antimalarial Efficacy on Plasmodium yoelii yoelii. Parasitology Research, 112, 1523-1527.
https://doi.org/10.1007/s00436-013-3298-2
[9]
Peters, W. and Robinson, B.L. (1992) The Chemotherapy of Rodent Malaria. XLVII. Studies on Pyronaridine and Other Mannich Base Antimalarials. Annals of Tropical Medicine & Parasitology, 86, 455-465.
https://doi.org/10.1080/00034983.1992.11812694
[10]
Sachanonta, N., Chotivanich, K., Chaisri, U., Turner, G., Ferguson, D., Day, N., et al. (2011) Ultrastructural and Real-time Microscopic Changes in P. falciparum-Infected Red Blood Cells Following Treatment with Antimalarial Drugs. Ultrastructural Pathology, 35, 214-225. https://doi.org/10.3109/01913123.2011.601405
[11]
Bizarro, P., Acevedo, S., Nino-Cabrera, G., Mussali-Galante, P., Pasos, F., Avila-Costa, M.R., et al. (2003) Ultrastructural Modifications in the Mitochondrion of Mouse Sertoli Cells after Inhalation of Lead, Cadmium or Lead-Cadmium Mixture. Reproductive Toxicology, 17, 561-566.
https://doi.org/10.1016/S0890-6238(03)00096-0
[12]
Yadav, R.N.S. and Agarwala, M. (2011) Phytochemical Analysis of Some Medicinal Plants. Journal of Phytology, 3, 10-14.
[13]
Brand, W.W., Cuvelier, M.E. and Berset, C. (1995) Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Science and Technology, 28, 25-30.
https://doi.org/10.1016/S0023-6438(95)80008-5
[14]
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999) Antioxidant activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine, 26, 1231-1237.
https://doi.org/10.1016/S0891-5849(98)00315-3
[15]
Ying, T.S., Liu, W., Liu, J., Yin, D. and Zhao, X. (2015) Influence of Ecological Factors on the Production of Active Substances in the Anti-Cancer Plant Sinopodophyllum hexandrum (Royle). PLos One, 10, e0122981.
https://doi.org/10.1371/journal.pone.0122981
[16]
Thapar, M.M., Gil, J.P. and Bjorkman, A. (2005) In Vitro Recrudescence of Plasmodium falciparum Parasites Suppressed to Dormant State by Atovaquone Alone and in Combination with Proguanil. Transactions of The Royal Society of Tropical Medicine and Hygiene, 99, 62-70. https://doi.org/10.1016/j.trstmh.2004.01.016
[17]
Veiga, M.I., Ferreira, P.E., Schmidt, B.A., Ribacke, U., BjÖrkman, A., Tichopad, A., et al. (2010) Antimalarial Exposure Delays Plasmodium falciparum Intra-Erythrocytic Cycle and Drives Drug Transporter Genes Expression. PLoS ONE, 5, e12408. https://doi.org/10.1371/journal.pone.0012408
[18]
Codd, A., Teuscher, F., Kyle, D.E., Cheng, Q. and Gatton, M.L. (2011) Artemisinin-Induced Parasite Dormancy: A Plausible Mechanism for Treatment Failure. Malaria Journal, 8, 56. https://doi.org/10.1186/1475-2875-10-56
[19]
Teuscher, F., Gatton, M.L., Chen, N., Peters, J., Kyle, D.E. and Cheng, Q. (2010) Artemisinin-Induced Dormancy in Plasmodium falciparum: Duration, Recovery Rates, and Implications in Treatment Failure. The Journal of Infectious Diseases, 202, 1362-1368. https://doi.org/10.1086/656476
[20]
Tucker, M.S., Mutka, T., Sparks, K., Patel, J. and Kyle, D.E. (2012) Phenotypic and Genotypic Analysis of In Vitro-Selected Artemisinin-Resistant Progeny of Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 56, 302-314.
https://doi: 10.1128/AAC.05540-11
[21]
Witkowski, B., Lelièvre, J., Barragán, M.J., Laurent, V., Su, X.Z., Berry, A., et al. (2010) Increased Tolerance to Artemisinin in Plasmodium falciparum Is Mediated by a Quiescence Mechanism. Antimicrobial Agents and Chemotherapy, 54, 1872-1877. https://doi.org/10.1128/AAC.01636-09
[22]
Meshnick, S.R., Taylor, T.E. and Kamchonwongpaisan, S. (1996) Artemisinin and the Antimalarial Endoperoxides: From Herbal Remedy to Targeted Chemotherapy. Microbiology Reviews, 60, 301-315.
[23]
Moneriz, C., García, M.P., Granados, G.A., Bautista, M.J., Diez, A. and Puyet, A. (2011) Parasitostatic Effect of Maslinic Acid. I. Growth Arrest of Plasmodium falciparum Intraerythrocytic Stages. Malaria Journal, 10, 82.
https://doi.org/10.1186/1475-2875-10-82
[24]
Nardos, A. and Makonnen, E. (2017) In Vivo Antiplasmodial Activity and Toxicological Assessment of Hydroethanolic Crude Extract of Ajuga remota. Malaria Journal, 16, 25. https://doi.org/10.1186/s12936-017-1677-3
[25]
Landau, I., Caillard, V., Beaute-Lafitte, A. and Chabaud, A. (1993) Chronobiology and Chronotherapy of Malaria: Investigations with Murine Malaria Models. Parassitologia, 35, 55-57.
[26]
Maeno, Y., Toyoshima, T., Fujioka, H., Ito, Y., Meshnick, S.R., Benakis, A., et al. (1993) Morphologic Effects of Artemisinin in Plasmodium falciparum. The American Journal of Tropical Medicine and Hygiene, 49, 485-491.
https://doi.org/10.4269/ajtmh.1993.49.485
[27]
Ellis, D.S., Li, Z.L., Gu, H.M., Peters, W., Robinson, B.L., Tovey, G., et al. (1985) The Chemotherapy of Rodent Malaria, XXXIX. Ultrastructural Changes Following Treatment with Artemisinine of Plasmodium berghei Infection in Mice, with Observations of the Localization of [3H]-Dihydroartemisinine in P. falciparum in Vitro. Annals of Tropical Medicine & Parasitology, 79, 367-374.
https://doi.org/10.1080/00034983.1985.11811933
[28]
Tian, G., Li, Y.C., Wang, J.Y., Ji, X.G., Yang, L. and Tu, Y.Y. (2008) Effects of Qinghao Extract on the Ultrastructure of Plasmodium berghei. Acta Parasitology et Medica Entomologica Sinica, 4, 13-15.
[29]
Beller, M., Thiel, K., Thul, P.J. and Jäckle, H. (2010) Lipid Droplets: A Dynamic Organelle Moves into Focus. FEBS Letters, 3584, 2176-2182.
[30]
Haynes, R.K. and Krishna, S. (2004) Artemisinins: Activities and Actions. Microbes and Infection, 6, 1339-1346. https://doi.org/10.1016/j.micinf.2004.09.002
[31]
Rivera, N., Samanta, E.R., Menchaca, A., Zepeda, A., García, L.E., Salas, G., et al. (2013) Blackwater Fever like in Murine Malaria. Parasitology Research, 112, 1021-1029. https://doi.org/10.1007/s00436-012-3224-z
Ginsburg, H. and Atamna, H. (1994) The Redox Status of Malaria-Infected Erythrocytes: An Overview with an Emphasis on Unresolved Problems. Parasite, 1, 5-13. https://doi.org/10.1051/parasite/1994011005
Bullock, G.C., Richardson, C.L., Schrott, V., Gunawardena, N.D., Cole, T.N., Corey, C.G., et al. (2015) The Role of Mitochondrial Metabolism and Redox Signaling in Iron Deficiency Anemia. Blood, 126, 2145-2145.
[36]
Reis, D., Comim, P.A., Hermani, C.M., Silva, F., Barichello, P.T., et al. (2010) Cognitive Dysfunction Is Sustained after Rescue Therapy in Experimental Cerebral Malaria, and Is Reduced by Additive Antioxidant Therapy. PLOS Pathogens, 6, e1000963. https://doi.org/10.1371/journal.ppat.1000963
[37]
Atmani, D., Chaher, N., Atman, D., Berboucha, M., Debbache, N. and Boudaoud, H. (2009) Flavonoids in Human Health: From Structure to Biological Activity. Current Nutrition and Food Science, 5, 225-235.
https://doi.org/10.2174/157340109790218049
[38]
Xu, Y., Burton, S., Kim, Ch. and Sismour, E. (2016) Phenolic Compounds, Antioxidant, and Antibacterial Properties of Pomace Extracts from Four Virginia-Grown Grape Varieties. Food Science & Nutrition, 4, 125-133.
https://doi.org/10.1002/fsn3.264