全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Standard and Truncated Luminosity Functions for Stars in the Gaia Era

DOI: 10.4236/ijaa.2017.74022, PP. 255-272

Keywords: Fundamental Parameters Stars, Luminosity Function, Mass Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

The luminosity function (LF) for stars is here fitted by a Schechter function and by a Gamma probability density function. The dependence of the number of stars on the distance, both in the low and high luminosity regions, requires the inclusion of a lower and upper boundary in the Schechter and Gamma LFs. Three astrophysical applications for stars are provided: deduction of the parameters at low distances, behavior of the average absolute magnitude with distance, and the location of the photometric maximum as a function of the selected flux. The use of the truncated LFs allows modeling the Malmquist bias.

References

[1]  Malmquist, K.G. (1920) A Study of the Stars of Spectral Type A. Meddelanden fran Lunds Astronomiska Observatorium Series II, 22, 1.
[2]  Malmquist, K.G. (1922) On Some Relations in Stellar Statistics. Meddelanden fran Lunds Astronomiska Observatorium Series I, 100, 1.
[3]  Malmquist, K.G. (1936) Investigations on the Stars in High Galactic Latitudes II. Photographic Magnitudes and Colour Indices of about 4500 Stars near the North Galactic Pole. Stockholms Observatoriums Annaler, 12, 7.
[4]  Binney, J. and Merrifield, M. (1998) Galactic Astronomy. Princeton University Press, Princeton.
[5]  Butkevich, A.G., Berdyugin, A.V. and Teerikorpi, P. (2005) Statistical Biases in Stellar Astronomy: The Malmquist bias Revisited. MNRAS, 362, 321.
https://doi.org/10.1111/j.1365-2966.2005.09306.x
[6]  Eddington, A.S. (1914) Stellar Movements and the Structure of the Universe. Macmillan and Co., London.
[7]  Jaschek, C. and Gomez, A.E. (1985) The Malmquist Correction. A&A, 146, 387.
[8]  Wielen, R. (1974) The Kinematics and Ages of Stars in Gliese’s Catalogue. Highlights of Astronomy, 3, 395.
https://doi.org/10.1017/S1539299600002100
[9]  Flynn, C., Holmberg, J., Portinari, L., Fuchs, B. and Jahreiß, H. (2006) On the Mass-to-Light Ratio of the Local Galactic Disc and the Optical Luminosity of the Galaxy. MNRAS, 372, 1149.
https://doi.org/10.1111/j.1365-2966.2006.10911.x
[10]  Just, A., Fuchs, B., Jahreiß, H., Flynn, C., Dettbarn, C. and Rybizki, J. (2015) The Local Stellar Luminosity Function and Mass-to-Light Ratio in the Near-Infrared. MNRAS, 451, 149.
https://doi.org/10.1093/mnras/stv858
[11]  Gaia Collaboration, Prusti, T., de Bruijne, J.H.J., Brown, A.G.A., Vallenari, A., Babusiaux, C., Bailer-Jones, C.A.L., Bastian, U., Biermann, M., Evans, D.W., et al. (2016) The Gaia Mission. A&A, 595, A1.
[12]  Gaia Collaboration, Brown, A.G.A., Vallenari, A., Prusti, T., de Bruijne, J.H.J., Mignard, F., Drimmel, R., Babusiaux, C., Bailer-Jones, C.A.L., Bastian, U., et al. (2016) Gaia Data Release 1. Summary of the Astrometric, Photometric, and Survey Properties. A&A, 595, A2.
[13]  Stassun, K.G. and Torres, G. (2016) Evidence for a Systematic Offset of -0.25 Mas in the Gaia DR1 Parallaxes. APJ, 831, L6.
[14]  Evans, D.W., Riello, M., De Angeli, F., Busso, G., van Leeuwen, F., Jordi, C., Fabricius, C., Brown, A.G.A., Carrasco, J.M., Voss, H., et al. (2017) Gaia Data Release 1. Validation of the Photometry. A&A, 600, A51.
[15]  Carrasco, J.M., Evans, D.W., Montegriffo, P., Jordi, C., van Leeuwen, F., Riello, M., Voss, H., De Angeli, F., Busso, G., et al. (2016) Gaia Data Release 1. Principles of the Photometric Calibration of the G Band. A&A, 595, A7.
[16]  Van Leeuwen, F., Evans, D.W., De Angeli, F., Jordi, C., Busso, G., Cacciari, C., Riello, M., Pancino, E., Altavilla, G., et al. (2017) Gaia Data Release 1. The Photometric Data. A&A, 599, A32.
[17]  Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.
[18]  Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716.
https://doi.org/10.1109/TAC.1974.1100705
[19]  Liddle, A.R. (2004) How Many Cosmological Parameters? MNRAS, 351, L49.
https://doi.org/10.1111/j.1365-2966.2004.08033.x
[20]  Godlowski, W. and Szydowski, M. (2005) Constraints on Dark Energy Models from Supernovae. In: Turatto, M., Benetti, S., Zampieri, L. and Shea, W., Eds., 1604-2004: Supernovae as Cosmological Lighthouses, Vol. 342 of Astronomical Society of the Pacific Conference Series, 508-516.
[21]  Schechter, P. (1976) An Analytic Expression for the Luminosity Function for Galaxies. APJ, 203, 297.
https://doi.org/10.1086/154079
[22]  Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions. 2nd Edition, Vol. 1, Wiley, New York.
[23]  Zaninetti, L. (2016) Pade Approximant and Minimax Rational Approximation in Standard Cosmology. Galaxies, 4, 4.
http://www.mdpi.com/2075-4434/4/1/4
[24]  Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.
[25]  Zaninetti, L. (2017) A Left and Right Truncated Schechter Luminosity Function for Quasars. Galaxies, 5, 25.
[26]  Zaninetti, L. (2013) A Right and Left Truncated Gamma Distribution with Application to the Stars. Advanced Studies in Theoretical Physics, 23, 1139.
[27]  Okasha, M.K. and Alqanoo, I.M. (2014) Inference on the Doubly Truncated Gamma Distribution for Lifetime Data. International Journal of Mathematics and Statistics Invention, 2, 1.
[28]  Bracewell, R.N. (2000) The Fourier Transform and Its Applications. McGraw-Hill, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133