Introduction: Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CM) form spontaneously beating syncytia in-vitro. We evaluated whether hiPSC-CM are a compelling model of human cardiac pharmacology useful for early drug development. Methods: We measured hiPSC-CM beating frequency using Ca-sensitive dyes and a high-throughput screening system. We quantified the effects of 640 drugs with various structures and pharmacologies. Results: When tested at 1 μM, most drugs without direct effects on heart rhythm or with effects at high concentrations do not change frequency, indicating specificity. In contrast, the preparation detects compounds with direct activity on heart rhythm, demonstrating sensitivity. In particular, β-adrenergic agonists increase frequency and the model differentiates β2 from β1 agonists, as well as partial from full agonists. Phosphodiesterase inhibitors have subtype-specific actions and PDE4 is particularly important in controlling frequency. The preparation is sensitive to cardiac ion channel blockers: L-type calcium channel blockers, Class-I and Class-III antiarrhythmics change frequency but drugs acting on KATP channels do not. The assay detects compounds blocking the cardiac rapid delayed-rectifier K channel and is an alternative to the classic “hERG test”. Conclusion: hiPSC-CM are a useful in-vitro cardiac model in drug development since they respond appropriately to drugs that modify heart rate in humans.
References
[1]
Kattman, S.J., Koonce, C.H., Swanson, B.J. and Anson, B.D. (2011) Stem Cells and Their Derivatives: A Renaissance in Cardiovascular Translational Research. Journal of Cardiovascular Translational Research, 4, 66-72. https://doi.org/10.1007/s12265-010-9235-1
[2]
Ma, J., Guo, L., Fiene, S.J., Anson, B.D., Thomson, J.A., Kamp, T.J., Kolaja, K.L., Swanson, B.J. and January, C.T. (2011) High Purity Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes: Electrophysiological Properties of Action Potentials and Ionic Currents. American Journal of Physiology Heart and Circulatory Physiology, 301, H2006-H2017. https://doi.org/10.1152/ajpheart.00694.2011
[3]
Jonsson, M.K., Wang, Q.D. and Becker, B. (2011) Impedance-Based Detection of Beating Rhythm and Proarrhythmic Effects of Compounds on Stem Cell-Derived Cardiomyocytes. Assay and Drug Development Technologies, 9, 589-599. https://doi.org/10.1089/adt.2011.0396
[4]
Guo, L., Abrams, R.M., Babiarz, J.E., Cohen, J.D., Kameoka, S., Sanders, M.J., Chiao, E. and Kolaja, K.L. (2011) Estimating the Risk of Drug-Induced Proarrhythmia using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicological Sciences, 123, 281-289. https://doi.org/10.1093/toxsci/kfr158
[5]
Sirenko, O., Crittenden, C., Callamaras, N., Hesley, J., Chen, Y.W., Funes, C., Rusyn, I., Anson, B. and Cromwell, E.F. (2013) Multiparameter in Vitro Assessment of Compound Effects on Cardiomyocyte Physiology Using IPSC Cells. Journal of Biomolecular Screening, 18, 39-53. https://doi.org/10.1177/1087057112457590
[6]
Puppala, D., Collis, L.P., Sun, S.Z., Bonato, V., Chen, X., Anson, B., Pletcher, M., Fermini, B. and Engle, S.J. (2013) Comparative Gene Expression Profiling in Human-Induced Pluripotent Stem Cell-Derived Cardiocytes and Human and Cynomolgus Heart Tissue. Toxicological Sciences, 131, 292-301. https://doi.org/10.1093/toxsci/kfs282
[7]
Zhang, J.H., Chung, T.D. and Oldenburg, K.R. (1999) A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. Journal of Biomolecular Screening, 4, 67-73. https://doi.org/10.1177/108705719900400206
[8]
Chen, T. and Chafetz, L. (1987) Kinetics of Procaterol Auto-Oxidation in Buffered Acid Solutions. Journal of Pharmaceutical Sciences, 76, 703-706. https://doi.org/10.1002/jps.2600760907
[9]
Schafers, R.F., Karl, I., Mennicke, K., Daul, A.E., Philipp, T. and Brodde, O.E. (1999) Ketotifen and Cardiovascular Effects of Xamoterol Following Single and Chronic Dosing in Healthy Volunteers. British Journal of Clinical Pharmacology, 47, 59-66. https://doi.org/10.1046/j.1365-2125.1999.00854.x
[10]
Black, J.W., Duncan, W.A. and Shanks, R.G. (1965) Comparison of Some Properties of Pronethalol and Propranolol. British Journal of Pharmacology and Chemotherapy, 25, 577-591. https://doi.org/10.1111/j.1476-5381.1965.tb01782.x
[11]
Nagatomo, T., Hosohata, Y., Ohnuki, T., Nakamura, T., Hattori, K., Suzuki, J. and Ishiguro, M. (2001) Bopindolol: Pharmacological Basis and Clinical Implications. Cardiovascular Drug Reviews, 19, 9-24. https://doi.org/10.1111/j.1527-3466.2001.tb00180.x
[12]
Weiner, N. (1985) Drugs That Inhibit Adrenergic Nerves and Block Adrenergic Receptors. In: Gilman, A.G., et al., Eds., The Pharmacological Basis of Therapeutics, Macmillan, New York.
[13]
Giudicelli, J.F., Chauvin, M., Thuillez, C., Richer, C., Bianchetti, G., Gomeni, R. and Morselli, P.L. (1980) Beta-Adrenoceptor Blocking Effects and Pharmacokinetics of Betaxolol (SL 75212) in Man. British Journal of Clinical Pharmacology, 10, 41-49. https://doi.org/10.1111/j.1365-2125.1980.tb00500.x
[14]
Gorczynski, R.J., Murthy, V.S. and Hwang, T.F. (1984) Beta-Blocking and Hemodynamic Effects of ASL-8052. Journal of Cardiovascular Pharmacology, 6, 1548-1559. https://doi.org/10.1097/00005344-198411000-00010
[15]
Yoshikawa, T., Port, J.D., Asano, K., Chidiak, P., Bouvier, M., Dutcher, D., Roden, R.L., Minobe, W., Tremmel, K.D. and Bristow, M.R. (1996) Cardiac Adrenergic Receptor Effects of Carvedilol. European Heart Journal, 17, 8-16. https://doi.org/10.1093/eurheartj/17.suppl_B.8
[16]
Schreiner, J., Nell, G. and Loeschke, K. (1980) Effect of Diphenolic Laxatives on Na+-K+-Activated ATPase and Cyclic Nucleotide Content of Rat Colon Mucosa in Vivo. Naunyn-Schmiedeberg’s Archives of Pharmacology, 313, 249-255. https://doi.org/10.1007/BF00505741
[17]
Harmer, A.R., Valentin, J.P. and Pollard, C.E. (2011) On the Relationship between Block of the Cardiac Na(+) Channel and Drug-Induced Prolongation of the QRS Complex. British Journal of Pharmacology, 164, 260-273. https://doi.org/10.1111/j.1476-5381.2011.01415.x
[18]
Giembycz, M.A. (2009) An Estimation of Beta 2-Adrenoceptor Reserve on Human Bronchial Smooth Muscle for Some Sympathomimetic Bronchodilators. British Journal of Pharmacology, 158, 287-299. https://doi.org/10.1111/j.1476-5381.2009.00277.x
[19]
Ekins, S., Crumb, W.J., Sarazan, R.D., Wikel, J.H. and Wrighton, S.A. (2002) Three-Dimensional Quantitative Structure-Activity Relationship for Inhibition of Human Ether-a-Go-Go-Related Gene Potassium Channel. Journal of Pharmacology and Experimental Therapeutics, 301, 427-434. https://doi.org/10.1124/jpet.301.2.427
[20]
Yao, X., McIntyre, M.S., Lang, D.G., Song, I.H., Becherer, J.D. and Hashim, M.A. (2005) Propranolol Inhibits the Human Ether-a-Go-Go-Related Gene Potassium Channels. European Journal of Pharmacology, 519, 208-211. https://doi.org/10.1016/j.ejphar.2005.05.010
[21]
Wible, B.A., Hawryluk, P., Ficker, E., Kuryshev, Y.A., Kirsch, G. and Brown, A.M. (2005) HERG-Lite: A Novel Comprehensive High-Throughput Screen for Drug-Induced HERG Risk. Journal of Pharmacological and Toxicological Methods, 52, 136-145. https://doi.org/10.1016/j.vascn.2005.03.008
[22]
Fossa, A.A., Wisialowski, T., Wolfgang, E., Wang, E., Avery, M., Raunig, D.L. and Fermini, B. (2004) Differential Effect of HERG Blocking Agents on Cardiac Electrical Alternans in the Guinea Pig. European Journal of Pharmacology, 486, 209-221. https://doi.org/10.1016/j.ejphar.2003.12.028
[23]
Ridley, J.M., Milnes, J.T., Hancox, J.C. and Witchel, H.J. (2006) Clemastine, a Conventional Antihistamine, Is a High Potency Inhibitor of the HERG K+ Channel. Journal of Molecular and Cellular Cardiology, 40, 107-118. https://doi.org/10.1016/j.yjmcc.2005.09.017
[24]
Kawakami, K., Nagatomo, T., Abe, H., Kikuchi, K., Takemasa, H., Anson, B.D., Delisle, B.P., January, C.T. and Nakashima, Y. (2006) Comparison of HERG Channel Blocking Effects of Various Beta-Blockers-Implication for Clinical Strategy. British Journal of Pharmacology, 147, 642-652. https://doi.org/10.1038/sj.bjp.0706508
[25]
Milnes, J.T., Witchel, H.J., Leaney, J.L., Leishman, D.J. and Hancox, J.C. (2010) Investigating Dynamic Protocol-Dependence of hERG Potassium Channel Inhibition at 37 Degrees C: Cisapride versus Dofetilide. Journal of Pharmacological and Toxicological Methods, 61, 178-191. https://doi.org/10.1016/j.vascn.2010.02.007
[26]
Monassier, L., Manoury, B., Bellocq, C., Weissenburger, J., Greney, H., Zimmermann, D., Ehrhardt, J.D., Jaillon, P., Baro, I. and Bousquet, P. (2007) Sigma(2)-Receptor Ligand-Mediated Inhibition of Inwardly Rectifying K(+) Channels in the Heart. Journal of Pharmacology and Experimental Therapeutics, 322, 341-350. https://doi.org/10.1124/jpet.107.122044
[27]
Jeong, I., Choi, B.H. and Hahn, S.J. (2010) Effects of Lobeline, a Nicotinic Receptor Ligand, on the Cloned Kv1.5. Pflügers Archiv, 460, 851-862. https://doi.org/10.1007/s00424-010-0868-3
[28]
Kongsamut, S., Kang, J., Chen, X.L., Roehr, J. and Rampe, D. (2002) A Comparison of the Receptor Binding and HERG Channel Affinities for a Series of Antipsychotic Drugs. European Journal of Pharmacology, 450, 37-41. https://doi.org/10.1016/S0014-2999(02)02074-5
[29]
Trepakova, E.S., Dech, S.J. and Salata, J.J. (2006) Flunarizine Is a Highly Potent Inhibitor of Cardiac hERG Potassium Current. Journal of Cardiovascular Pharmacology, 47, 211-220. https://doi.org/10.1097/01.fjc.0000200810.18575.80
[30]
Silvestre, J.S. and Prous, J.R. (2007) Comparative Evaluation of hERG Potassium Channel Blockade by Antipsychotics. Methods and Findings in Experimental and Clinical Pharmacology, 29, 457-465. https://doi.org/10.1358/mf.2007.29.7.1119172
[31]
Fossa, A.A., Gorczyca, W., Wisialowski, T., Yasgar, A., Wang, E., Crimin, K., Volberg, W. and Zhou, J. (2007) Electrical Alternans and Hemodynamics in the Anesthetized Guinea Pig Can Discriminate the Cardiac Safety of Antidepressants. Journal of Pharmacological and Toxicological Methods, 55, 78-85. https://doi.org/10.1016/j.vascn.2006.03.007
[32]
Davie, C., Valentin, J.P., Pollard, C., Standen, N., Mitcheson, J., Alexander, P. and Thong, B. (2004) Comparative Pharmacology of Guinea Pig Cardiac Myocyte and Cloned hERG (I(Kr)) Channel. Journal of Cardiovascular Electrophysiology, 15, 1302-1309. https://doi.org/10.1046/j.1540-8167.2004.04099.x
[33]
Claassen, S. and Zunkler, B.J. (2005) Comparison of the Effects of Metoclopramide and Domperidone on HERG Channels. Pharmacology, 74, 31-36. https://doi.org/10.1159/000083234
[34]
Scherer, D., von Lowenstern, K., Zitron, E., Scholz, E.P., Bloehs, R., Kathofer, S., Thomas, D., Bauer, A., Katus, H.A., Karle, C.A. and Kiesecker, C. (2008) Inhibition of Cardiac hERG Potassium Channels by Tetracyclic Antidepressant Mianserin. Naunyn-Schmiedeberg’s Archives of Pharmacology, 378, 73-83. https://doi.org/10.1007/s00210-008-0289-4
[35]
Kikuchi, K., Nagatomo, T., Abe, H., Kawakami, K., Duff, H.J., Makielski, J.C., January, C.T. and Nakashima, Y. (2005) Blockade of HERG Cardiac K+ Current by Antifungal Drug Miconazole. British Journal of Pharmacology, 144, 840-848. https://doi.org/10.1038/sj.bjp.0706095
[36]
Jo, S.H., Hong, H.K., Chong, S.H., Lee, H.S. and Choe, H. (2009) H(1) Antihistamine Drug Promethazine Directly Blocks hERG K(+) Channel. Pharmacological Research, 60, 429-437. https://doi.org/10.1016/j.phrs.2009.05.008
[37]
Liu, H., Yang, L., Jin, M.W., Sun, H.Y., Huang, Y. and Li, G.R. (2010) The Selective Estrogen Receptor Modulator Raloxifene Inhibits Cardiac Delayed Rectifier Potassium Currents and Voltage-Gated Sodium Current without QTc Interval Prolongation. Pharmacological Research, 62, 384-390. https://doi.org/10.1016/j.phrs.2010.07.008
[38]
Kim, K.S., Kim, E.J., Lee, H.A. and Park, S.J. (2009) Effect of Sibutramine HCl on Cardiac hERG K+ Channel. Molecular and Cellular Biochemistry, 320, 125-131. https://doi.org/10.1007/s11010-008-9914-2
[39]
Mannikko, R., Overend, G., Perrey, C., Gavaghan, C.L., Valentin, J.P., Morten, J., Armstrong, M. and Pollard, C.E. (2010) Pharmacological and Electrophysiological Characterization of Nine, Single Nucleotide Polymorphisms of the hERG-Encoded Potassium Channel. British Journal of Pharmacology, 159, 102-114. https://doi.org/10.1111/j.1476-5381.2009.00334.x
[40]
Cheng, J., Niwa, R., Kamiya, K., Toyama, J. and Kodama, I. (1999) Carvedilol Blocks the Repolarizing K+ Currents and the L-type Ca2+ Current in Rabbit Ventricular Myocytes. European Journal of Pharmacology, 376, 189-201. https://doi.org/10.1016/S0014-2999(99)00368-4
[41]
Deisemann, H., Ahrens, N., Schlobohm, I., Kirchhoff, C., Netzer, R. and Moller, C. (2008) Effects of Common Antitussive Drugs on the hERG Potassium Channel Current. Journal of Cardiovascular Pharmacology, 52, 494-499. https://doi.org/10.1097/FJC.0b013e31818eec8d
[42]
Kuryshev, Y.A., Brown, A.M., Wang, L., Benedict, C.R. and Rampe, D. (2000) Interactions of the 5-Hydroxytryptamine 3 Antagonist Class of Antiemetic Drugs with Human Cardiac Ion Channels. Journal of Pharmacology and Experimental Therapeutics, 295, 614-620.
[43]
Paul, A.A., Witchel, H.J. and Hancox, J.C. (2002) Inhibition of the Current of Heterologously Expressed HERG Potassium Channels by Flecainide and Comparison with Quinidine, Propafenone and Lignocaine. British Journal of Pharmacology, 136, 717-729. https://doi.org/10.1038/sj.bjp.0704784
[44]
Katchman, A.N., Koerner, J., Tosaka, T., Woosley, R.L. and Ebert, S.N. (2006) Comparative Evaluation of HERG Currents and QT Intervals Following Challenge with Suspected Torsadogenic and Nontorsadogenic Drugs. Journal of Pharmacology and Experimental Therapeutics, 316, 1098-1106. https://doi.org/10.1124/jpet.105.093393
[45]
Kim, K.S., Lee, H.A., Cha, S.W., Kwon, M.S. and Kim, E.J. (2010) Blockade of hERG K(+) Channel by Antimalarial Drug, Primaquine. Archives of Pharmacal Research, 33, 769-773. https://doi.org/10.1007/s12272-010-0517-6
[46]
Qian, J.Y. and Guo, L. (2010) Altered Cytosolic Ca2+ Dynamics in Cultured Guinea Pig Cardiomyocytes as an in Vitro Model to Identify Potential Cardiotoxicants. Toxicology in Vitro, 24, 960-972. https://doi.org/10.1016/j.tiv.2009.12.027
[47]
Gonzalez, T., Arias, C., Caballero, R., Moreno, I., Delpon, E., Tamargo, J. and Valenzuela, C. (2002) Effects of Levobupivacaine, Ropivacaine and Bupivacaine on HERG Channels: Stereoselective Bupivacaine Block. British Journal of Pharmacology, 137, 1269-1279. https://doi.org/10.1038/sj.bjp.0704978
[48]
Volberg, W.A., Koci, B.J., Su, W., Lin, J. and Zhou, J. (2002) Blockade of Human Cardiac Potassium Channel Human Ether-a-Go-Go-Related Gene (HERG) by Macrolide Antibiotics. Journal of Pharmacology and Experimental Therapeutics, 302, 320-327. https://doi.org/10.1124/jpet.302.1.320
[49]
Han, S., Zhang, Y., Chen, Q., Duan, Y., Zheng, T., Hu, X., Zhang, Z. and Zhang, L. (2011) Fluconazole Inhibits hERG K(+) Channel by Direct Block and Disruption of Protein Trafficking. European Journal of Pharmacology, 650, 138-144. https://doi.org/10.1016/j.ejphar.2010.10.010
[50]
Rosati, B., Rocchetti, M., Zaza, A. and Wanke, E. (1998) Sulfonylureas Blockade of Neural and Cardiac HERG Channels. FEBS Letters, 440, 125-130. https://doi.org/10.1016/S0014-5793(98)01444-6
[51]
Xing, J., Ma, J., Zhang, P. and Fan, X. (2010) Block Effect of Capsaicin on hERG Potassium Currents Is Enhanced by S6 Mutation at Y652. European Journal of Pharmacology, 630, 1-9. https://doi.org/10.1016/j.ejphar.2009.11.009
[52]
Missan, S., Zhabyeyev, P., Dyachok, O., Jones, S.E. and McDonald, T.F. (2003) Block of Cardiac Delayed-Rectifier and Inward-Rectifier K+ Currents by Nisoldipine. British Journal of Pharmacology, 140, 863-870. https://doi.org/10.1038/sj.bjp.0705518
[53]
Liu, Y.C., Wang, Y.J. and Wu, S.N. (2008) The Mechanisms of Propofol-Induced Block on Ion Currents in Differentiated H9c2 Cardiac Cells. European Journal of Pharmacology, 590, 93-98. https://doi.org/10.1016/j.ejphar.2008.05.040
[54]
Dustan Sarazan, R., Crumb, W.J., Jr., Beasley, C.M., Jr., Emmick, J.T., Ferguson, K.M., Strnat, C.A. and Sausen, P.J. (2004) Absence of Clinically Important HERG Channel Blockade by Three Compounds That Inhibit Phosphodiesterase 5-Sildenafil, Tadalafil, and Vardenafil. European Journal of Pharmacology, 502, 163-167. https://doi.org/10.1016/j.ejphar.2004.09.005
[55]
Anson, B.D., Weaver, J.G., Ackerman, M.J., Akinsete, O., Henry, K., January, C.T. and Badley, A.D. (2005) Blockade of HERG Channels by HIV Protease Inhibitors. The Lancet, 365, 682-686. https://doi.org/10.1016/S0140-6736(05)70936-3
[56]
Thomsen, M.B., Beekman, J.D., Attevelt, N.J., Takahara, A., Sugiyama, A., Chiba, K. and Vos, M.A. (2006) No Proarrhythmic Properties of the Antibiotics Moxifloxacin or Azithromycin in Anaesthetized Dogs with Chronic-AV Block. British Journal of Pharmacology, 149, 1039-1048. https://doi.org/10.1038/sj.bjp.0706900
[57]
Moller, C. and Netzer, R. (2006) Effects of Estradiol on Cardiac ion Channel Currents. European Journal of Pharmacology, 532, 44-49. https://doi.org/10.1016/j.ejphar.2006.01.006
[58]
Yunomae, K., Ichisaki, S., Matsuo, J., Nagayama, S., Fukuzaki, K., Nagata, R. and Kito, G. (2007) Effects of Phosphodiesterase (PDE) Inhibitors on Human Ether-a-Go-Go Related Gene (hERG) Channel Activity. Journal of Applied Toxicology, 27, 78-85. https://doi.org/10.1002/jat.1201
[59]
Kaddar, N., Vigneault, P., Pilote, S., Patoine, D., Simard, C. and Drolet, B. (2012) Tizanidine (Zanaflex): A Muscle Relaxant That May Prolong the QT Interval by Blocking IKr. Journal of Cardiovascular Pharmacology and Therapeutics, 17, 102-109. https://doi.org/10.1177/1074248410395020
[60]
Danielsson, B.R., Lansdell, K., Patmore, L. and Tomson, T. (2003) Phenytoin and Phenobarbital Inhibit Human HERG Potassium Channels. Epilepsy Research, 55, 147-157. https://doi.org/10.1016/S0920-1211(03)00119-0
[61]
Chae, Y.J., Jeon, J.H., Lee, H.J., Kim, I.B., Choi, J.S., Sung, K.W. and Hahn, S.J. (2013) Escitalopram Block of hERG Potassium Channels. Naunyn-Schmiedeberg’s Archives of Pharmacology.
[62]
Danielsson, B.R., Lansdell, K., Patmore, L. and Tomson, T. (2005) Effects of the Antiepileptic Drugs Lamotrigine, Topiramate and Gabapentin on hERG Potassium Currents. Epilepsy Research, 63, 17-25. https://doi.org/10.1016/j.eplepsyres.2004.10.002
[63]
Vigneault, P., Bourgault, S., Kaddar, N., Caillier, B., Pilote, S., Patoine, D., Simard, C. and Drolet, B. (2012) Galantamine (Reminyl) Delays Cardiac Ventricular Repolarization and Prolongs the QT Interval by Blocking the HERG Current. European Journal of Pharmacology, 681, 68-74. https://doi.org/10.1016/j.ejphar.2012.02.002
[64]
Kang, J., Wang, L., Chen, X.L., Triggle, D.J. and Rampe, D. (2001) Interactions of a Series of Fluoroquinolone Antibacterial Drugs with the Human Cardiac K+ Channel HERG. Molecular Pharmacology, 59, 122-126.
[65]
Martin, R.L., McDermott, J.S., Salmen, H.J., Palmatier, J., Cox, B.F. and Gintant, G.A. (2004) The Utility of hERG and Repolarization Assays in Evaluating Delayed Cardiac Repolarization: Influence of Multi-Channel Block. Journal of Cardiovascular Pharmacology, 43, 369-379. https://doi.org/10.1097/00005344-200403000-00007
[66]
Morisawa, T., Hasegawa, J., Hama, R., Kitano, M., Kishimoto, Y. and Kawasaki, H. (1999) Effects of Itopride Hydrochloride on the Delayed Rectifier K+ and L-Type Ca2+ Currents in Guinea-Pig Ventricular Myocytes. Research Communications in Molecular Pathology and Pharmacology, 106, 37-45.
[67]
Zunkler, B.J., Claassen, S., Wos-Maganga, M., Rustenbeck, I. and Holzgrabe, U. (2006) Effects of Fluoroquinolones on HERG Channels and on Pancreatic Beta-Cell ATP-Sensitive K+ Channels. Toxicology, 228, 239-248. https://doi.org/10.1016/j.tox.2006.09.002
[68]
Lu, H.R., Vlaminckx, E., Hermans, A.N., Rohrbacher, J., Van Ammel, K., Towart, R., Pugsley, M. and Gallacher, D.J. (2008) Predicting Drug-Induced Changes in QT Interval and Arrhythmias: QT-Shortening Drugs Point to Gaps in the ICHS7B Guidelines. British Journal of Pharmacology, 154, 1427-1438. https://doi.org/10.1038/bjp.2008.191
[69]
Wu, Z.Y., Yu, D.J., Soong, T.W., Dawe, G.S. and Bian, J.S. (2011) Progesterone Impairs Human Ether-a-Go-Go-Related Gene (HERG) Trafficking by Disruption of Intracellular Cholesterol Homeostasis. The Journal of Biological Chemistry, 286, 22186-22194. https://doi.org/10.1074/jbc.M110.198853
[70]
Hurst, R.S., Higdon, N.R., Lawson, J.A., Clark, M.A., Ruth-erford-Root, K.L., McDonald, W.G., Haas, J.V., McGrath, J.P. and Meglasson, M.D. (2003) Dopamine Receptor Agonists Differ in Their Actions on Cardiac Ion Channels. European Journal of Pharmacology, 482, 31-37. https://doi.org/10.1016/j.ejphar.2003.09.054
[71]
Carpentier, R.G. (1984) Effects of Betacarbolines on the Automaticity of the Guinea Pig Sinus Node. Substance and Alcohol Actions/Misuse, 5, 141-148.
[72]
Ray, W.A., Murray, K.T., Hall, K., Arbogast, P.G. and Stein, C.M. (2012) Azithromycin and the Risk of Cardiovascular Death. The New England Journal of Medicine, 366, 1881-1890. https://doi.org/10.1056/NEJMoa1003833
[73]
Regan, T.J., Passannante, A.J., Oldewurtel, H.A. and Khan, M.I. (1969) Ventricular Arrhythmias Related to Antibiotic Usage in Dogs. Science, 165, 509-510. https://doi.org/10.1126/science.165.3892.509
[74]
Molina, C.E., Leroy, J., Richter, W., Xie, M., Scheitrum, C., Lee, I.O., Maack, C., Rucker-Martin, C., Donzeau-Gouge, P., Verde, I., Llach, A., Hove-Madsen, L., Conti, M., Vandecasteele, G. and Fischmeister, R. (2012) Cyclic Adenosine Monophosphate Phosphodiesterase Type 4 Protects against Atrial Arrhythmias. Journal of the American College of Cardiology, 59, 2182-2190. https://doi.org/10.1016/j.jacc.2012.01.060
[75]
Lehnart, S.E., Wehrens, X.H., Reiken, S., Warrier, S., Belevych, A.E., Harvey, R.D., Richter, W., Jin, S.L., Conti, M. and Marks, A.R. (2005) Phosphodiesterase 4D Deficiency in the Ryanodine-Receptor Complex Promotes Heart Failure and Arrhythmias. Cell, 123, 25-35. https://doi.org/10.1016/j.cell.2005.07.030
[76]
Lakatta, E.G. and DiFrancesco, D. (2009) What Keeps Us Ticking: A Funny Current, a Calcium Clock, or Both? Journal of Molecular and Cellular Cardiology, 47, 157-170. https://doi.org/10.1016/j.yjmcc.2009.03.022
[77]
Hambleton, R., Krall, J., Tikishvili, E., Honeggar, M., Ahmad, F., Manganiello, V.C. and Movsesian, M.A. (2005) Isoforms of Cyclic Nucleotide Phosphodiesterase PDE3 and Their Contribution to cAMP Hydrolytic Activity in Subcellular Fractions of Human Myocardium. The Journal of Biological Chemistry, 280, 39168-39174. https://doi.org/10.1074/jbc.M506760200
[78]
Mika, D., Leroy, J., Vandecasteele, G. and Fischmeister, R. (2012) Role of Cyclic Nucleotide Phosphodiesterases in the cAMP Compartmentation in Cardiac Cells. Biologie Aujourd’hui, 206, 11-24. https://doi.org/10.1051/jbio/2012003
[79]
Akita, T., Joyner, R.W., Lu, C., Kumar, R. and Hartzell, H.C. (1994) Developmental Changes in Modulation of Calcium Currents of Rabbit Ventricular Cells by Phosphodiesterase Inhibitors. Circulation, 90, 469-478. https://doi.org/10.1161/01.CIR.90.1.469
[80]
Kodama, I., Nikmaram, M.R., Boyett, M.R., Suzuki, R., Honjo, H. and Owen, J.M. (1997) Regional Differences in the Role of the Ca2+ and Na+ Currents in Pacemaker Activity in the Sinoatrial Node. American Journal of Physiology Heart and Circulatory Physiology, 272, H2793-2806.
[81]
Zhang, H., Holden, A.V., Kodama, I., Honjo, H., Lei, M., Varghese, T. and Boyett, M.R. (2000) Mathematical Models of Action Potentials in the Periphery and Center of the Rabbit Sinoatrial Node. American Journal of Physiology Heart and Circulatory Physiology, 279, H397-421.
[82]
Rajala, K., Pekkanen-Mattila, M. and Aalto-Setala, K. (2011) Cardiac Differentiation of Pluripotent Stem Cells. Stem Cells International, 2011, Article ID: 383709. https://doi.org/10.4061/2011/383709
[83]
Paci, M., Hyttinen, J., Rodriguez, B. and Severi, S. (2015) Human Induced Pluripotent Stem Cell-Derived versus Adult Cardiomyocytes: An in Silico Electrophysiological Study on Effects of Ionic Current Block. British Journal of Pharmacology, 172, 5147-5160. https://doi.org/10.1111/bph.13282
[84]
Chae, Y.J., Lee, K.J., Lee, H.J., Sung, K.W., Choi, J.S., Lee, E.H. and Hahn, S.J. (2015) Endoxifen, the Active Metabolite of Tamoxifen, Inhibits Cloned hERG Potassium Channels. European Journal of Pharmacology, 752, 1-7. https://doi.org/10.1016/j.ejphar.2015.01.048
[85]
Crumb, W.J., Jr., Vicente, J., Johannesen, L. and Strauss, D.G. (2016) An Evaluation of 30 Clinical Drugs against the Comprehensive in Vitro Proarrhythmia Assay (CiPA) Proposed Ion Channel Panel. Journal of Pharmacological and Toxicological Methods, 81, 251-262. https://doi.org/10.1016/j.vascn.2016.03.009