Chronic kidney disease is currently a major public health problem around the world. Although hemodialysis increases survival of patients with end-stage renal disease, kidney transplantation remains the only potentially curative treatment. However, transplantation as a therapeutic option is limited by availability of suitable donor organs. This situation highlights the urgent need to find new and potentially inexhaustible sources of transplantable organs. Perfusion decellularizarion of whole organs is a novel approach to organ engineering and regeneration. In the present research, we used a continuous perfusion decellularization protocol to eliminate cellular componet of kidney and evaluated residual scaffold components after decellularizarion process by proteomics analysis. Our proteomic data show that this protocol results in incomplete removal of cellular proteins. However, unlike other authors, we assume that proteins retained within decellularized kidney scaffold could be the basis for specific homing and celular differentation in the recellularization process.
References
[1]
Schoolwerth, A.C., Engelgau, M.M., Hostetter, T.H., Rufo, K.H., Chianchiano, D., McClellan, W.M., et al. (2006) Chronic Kidney Disease: A Public Health Problem That Needs a Public Health Action Plan. Preventing Chronic Disease, 3, A57.
[2]
Schieppati, A. and Remuzzi, G. (2005) Chronic Renal Diseases as a Public Health Problem: Epidemiology, Social, and Economic Implications. Kidney International Supplements, 98, S7-S10. https://doi.org/10.1111/j.1523-1755.2005.09801.x
[3]
Meguid El Nahas, A. and Bello, A.K. (2005) Chronic Kidney Disease: The Global Challenge. Lancet, 365, 331-340. https://doi.org/10.1016/S0140-6736(05)17789-7
[4]
Abolbashari, M., Agcaoili, S.M., Lee, M.K., Ko, I.K., Aboushwareb, T., Jackson, J.D., et al. (2016) Repopulation of Porcine Kidney Scaffold Using Porcine Primary Renal Cells. Acta Biomater, 29, 52-61. https://doi.org/10.1016/j.actbio.2015.11.026
[5]
Ott, H.C., Matthiesen, T.S., Goh, S.K., Black, L.D., Kren, S.M., Netoff, T.I., et al. (2008) Perfusion-Decellularized Matrix: Using Nature’s Platform to Engineer a Bioartificial Heart. Nature Medicine, 14, 213-221. https://doi.org/10.1038/nm1684
[6]
Ott, H.C., Clippinger, B., Conrad, C., Schuetz, C., Pomerantseva, I., Ikonomou, L., et al. (2010) Regeneration and Orthotopic Transplantation of a Bioartificial Lung. Nature Medicine, 16, 927-933. https://doi.org/10.1038/nm.2193
[7]
Uygun, B.E., Soto-Gutierrez, A., Yagi, H., Izamis, M.L., Guzzardi, M.A., Shulman, C., et al. (2010) Organ Reengineering through Development of a Transplantable Recellularized Liver Graft Using Decellularized Liver Matrix. Nature Medicine, 16, 814-820. https://doi.org/10.1038/nm.2170
[8]
Baptista, P.M., Siddiqui, M.M., Lozier, G., Rodriguez, S.R., Atala, A. and Soker, S. (2011) The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid. Hepatology, 53, 604-617. https://doi.org/10.1002/hep.24067
[9]
Orlando, G., Wood, K.J., Stratta, R.J., Yoo, J.J., Atala, A. and Soker. S. (2011) Regenerative Medicine and Organ Transplantation: Past, Present, and Future. Transplantation, 91, 1310-1317. https://doi.org/10.1097/TP.0b013e318219ebb5
[10]
Chani, B, Puri, V., Sobti, R.C., Jha, V. and Puri, S. (2017) Decellularized Scaffold of Cryopreserved Rat Kidney Retains Its Recellularization Potential. PLoS One, 12, e0173040. https://doi.org/10.1371/journal.pone.0173040
[11]
Guyette, J.P., Gilpin, S.E., Charest, J.M., Tapias, L.F., Ren, X. and Ott, H.C. (2014) Perfusion Decellularization of Whole Organs. Nature Protocols, 9, 1451-1468. https://doi.org/10.1038/nprot.2014.097
[12]
Peloso, A., Ferrario, J., Maiga, B., Benzoni, I., Bianco, C., Citro, A., et al. (2015) Creation and Implantation of Acellular Rat Renal ECM-Based Scaffolds. Organogenesis, 11, 58-74. https://doi.org/10.1080/15476278.2015.1072661
[13]
Song, J.J., Guyette, J.P., Gilpin, S.E., Gonzalez, G., Vacanti, J.P. and Ott, H.C. (2013) Regeneration and Experimental Orthotopic Transplantation of a Bioengineered Kidney. Nature Medicine, 19, 646-651. https://doi.org/10.1038/nm.3154
[14]
Caralt, M., Uzarski, J.S., Iacob, S., Obergfell, K.P, Berg, N., Bijonowski, B.M., et al. (2015) Optimization and Critical Evaluation of Decellularization Strategies to Develop Renal Extracellular Matrix Scaffolds as Biological Templates for Organ Engineering and Transplantation. American Journal of Transplantation, 15, 64-75. https://doi.org/10.1111/ajt.12999
[15]
Li, Q., Uygun, B.E., Geerts, S., Oze, S., Scalf, M., Gilpin, S.E., et al. (2016) Proteomic Analysis of Naturally-Sourced Biological Scaffolds. Biomaterials, 75, 37-46. https://doi.org/10.1016/j.biomaterials.2015.10.011
[16]
Rusconi, F., Valton, E., Nguyen, R. and Dufourc, E. (2001) Quantification of Sodium Dodecyl Sulfate in Microliter-Volume Biochemical Samples by Visible Light Spectroscopy. Analytical Biochemistry, 295, 31-37. https://doi.org/10.1006/abio.2001.5164
[17]
Vowinckel, J., Capuano, F., Campbell, K., Deery, M.J., Lilley, K.S. and Ralser, M. (2013) The Beauty of Being (label)-Free: Sample Preparation Methods for SWATH-MS and Next-Generation Targeted Proteomics. F1000Research, 2, 272. https://doi.org/10.12688/f1000research.2-272.v2
[18]
Wang, Y., Bao, J., Wu, Q., Zhou, Y., Li, Y., Wu, X., et al. (2015) Method for Perfusion Decellularization of Porcine Whole Liver and Kidney for Use as a Scaffold for Clinical-Scale Bioengineering Engrafts. Xenotransplantation, 22, 48-61. https://doi.org/10.1111/xen.12141
[19]
Destefani, A.C., Sirtoli, G.M. and Nogueira, B.V. (2017) Advances in the Knowledge about Kidney Decellularization and Repopulation. Frontiers in Bioengineering and Biotechnology, 5, 34. https://doi.org/10.3389/fbioe.2017.00034
[20]
Samouillan, V., Dandurand-Lods, J., Lamure, A., Maurel, E, Lacabanne, C., Gerosa, G., et al. (1999) Thermal Analysis Characterization of Aortic Tissues for Cardiac Valve Bioprostheses. Journal of Biomedical Materials Research, 46, 531-538. https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4<531::AID-JBM11>3.0.CO;2-2
[21]
Woods, T. and Gratzer, P.F. (2005) Effectiveness of Three Extraction Techniques in the Development of a Decellularized Bone-Anterior Cruciate Ligament-Bone Graft. Biomaterials, 26, 7339-7349. https://doi.org/10.1016/j.biomaterials.2005.05.066
[22]
Ren, H., Shi, X., Tao, L., Xiao, J., Han, B., Zhang, Y., et al. (2013) Evaluation of Two Decellularization Methods in the Development of a Whole-Organ Decellularized Rat Liver Scaffold. Liver International, 33, 448-458. https://doi.org/10.1111/liv.12088
[23]
Ross, E.A., Williams, M.J., Hamazaki, T., Terada, N., Clapp, W.L., Adin, C., et al. (2009) Embryonic Stem Cells Proliferate and Differentiate When Seeded into Kidney Scaffolds. Journal of the American Society of Nephrology, 20, 2338-2347. https://doi.org/10.1681/ASN.2008111196
[24]
Crapo, P.M., Gilbert, T.W. and Badylak, S.F. (2011) An Overview of Tissue and Whole Organ Decellularization Processes. Biomaterials, 32, 3233-3243. https://doi.org/10.1016/j.biomaterials.2011.01.057
[25]
Gilpin, S.E., Guyette, J.P., Gonzalez, G., Ren, X., Asara, J.M., Mathisen, D.J., et al. (2014) Perfusion Decellularization of Human and Porcine Lungs: Bringing the Matrix to Clinical Scale. The Journal of Heart and Lung Transplantation, 33, 298-308. https://doi.org/10.1016/j.healun.2013.10.030
[26]
Marçal, H., Ahmed, T., Badylak, S.F., Tottey, S. and Foster, L.J. (2012) A Comprehensive Protein Expression Profile of Extracellular Matrix Biomaterial Derived from Porcine Urinary Bladder. Regenerative Medicine, 7, 159-166. https://doi.org/10.2217/rme.12.6
[27]
Hill, R.C., Calle, E.A., Dzieciatkowska, M., Niklason, L.E. and Hansen, K.C. (2015) Quantification of Extracellular Matrix Proteins from a Rat Lung Scaffold to Provide a Molecular Readout for Tissue Engineering. Molecular & Cellular Proteomics, 14, 961-973. https://doi.org/10.1074/mcp.M114.045260
[28]
Doyonnas, R., Kershaw, D.B., Duhme, C., Merkens, H., Chelliah, S., Graf, T., et al. (2001) Anuria, Omphalocele, and Perinatal Lethality in Mice Lacking the CD34-Related Protein Podocalyxin. The Journal of Experimental Medicine, 194, 13-27. https://doi.org/10.1084/jem.194.1.13
[29]
Cheng, H.Y., Lin, Y.Y., Yu, C.Y., Chen, J.Y., Shen, K.F., Lin, W.L., et al. (2005) Molecular Identification of Canine Podocalyxin-Like Protein 1 as a Renal Tubulogenic Regulator. Journal of the American Society of Nephrology, 16, 1612-1622. https://doi.org/10.1681/ASN.2004121145