A numerical modelling activity was completed to explore the impact that the angle θ created by the torch from the vertical had upon the thermal and mechanical predictions for a T-joint autogenous TIG welded component. A parametric system of 9 models was set-up to simulate the effects of varying the angle θ by a small, potentially unnoticeable amount to a manual operator. The variations ranged from -8° to +8° away from a nominal default position of torch. The numerical models were created and computed using specialist welding simulation software Sysweld, and pre/post-processing software Visual Environment (both owned by ESI Group). The resulting weakly-coupled thermal and mechanical analyses illustrated a small deflection of angle that the weld bead was penetrating in to the T-joint, consistent with the variation in torch angle, and a negligible variation in peak temperature of 1.8%. The mechanical results however demonstrated a more significant output, namely that the distortion observed upon the vertical plate within the T-joint was predicted to increase by over 50% as result of this small shift in the welding torch angle. However, other mechanical predictions for plastic strain, Von Mises residual stress and distortion on the horizontal plate, were all suggesting only very minor sensitivity (typically less than 5%) to the torch angle variation. However, the predictions for vertical plate distortions demonstrate how difficult a manual TIG operation can be to perform with sufficient process control and repeatability, due to the significant impact that human operator-induced variation has upon some of the mechanical outputs.
References
[1]
Baghel, P.K. and Nagesh, D.S. (2017) Pulse TIG Welding: Process, Automation and Control. Journal of Welding and Joining, 35, 43-48.
[2]
Henon, B.K. (2010) Automated Hot Wire TIG with Positioner for High Productivity Quality Welding. Focus on Nuclear Power Generation, February 2010.
[3]
Panchal, K. (2016) Experimental Investigation of TIG Welding on Stainless Steel and Mild Steel Plates. Journal of Emerging Technologies and Innovative Research (JETIR), 3, 25-32.
[4]
Lindgren, L.-E. (2006) Numerical Simulation of Welding. Computer Methods in Applied Mechanics and Engineering, 195, 6710-6736.
[5]
Lundback, A. (2010) Finite Element Modelling and Simulation of Welding of Aerospace Components. Doctoral Licentiate Thesis, Lulea University of Technology, Sweden.
[6]
Villa, M. (2016) Metallurgical and Mechanical Modelling of Ti-6Al-4V for Welding Applications. Ph.D. Thesis, University of Birmingham, UK.
[7]
Turner, R.P., Gebelin, J.-C., Ward, R.M., Huang, J. and Reed, R.C. (2012) Modelling of the Electron Beam Welding of a Titanium Aeroengine Compressor Disc. Proceedings of the 9th International Trends in Welding Research Conference, Chicago.
[8]
Stone, H.J., Roberts, S.M. and Reed, R.C. (2000) A Process Model for the Distortion Induced by the Electron Beam Welding of a Nickel-Based Superalloy. Metallurgical and Materials Transactions A, 31, 2261-2273.
[9]
Ganjigatti, J.P., Pratihar, D.K. and RoyChoudhury, A. (2008) Modelling of the MIG Welding Process Using Statistical Approaches. The International Journal of Advanced Manufacturing Technology, 35, 1166-1190.
[10]
Cho, D.-W. Cho, W.-I. and Na, S.-J. (2014) Modeling and Simulation of Arc: Laser and Hybrid Welding Process. Journal of Manufacturing Processes, 16, 26-55.
[11]
Rosenthal, D. (1946) The Theory of Moving Sources of Heat and Its Application to Metal Treatments. Transactions ASME, 43, 849-866.
[12]
Goldak, J., Chakravati, A. and Bibby, M. (1984) A New Finite Element Model for Welding Heat Sources. Metallurgical Transactions B, 15, 299-305.
https://doi.org/10.1007/BF02667333
[13]
ESI Group, 100-2 Avenue de Suffren, 75015 Paris, France.