全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diversity of Gold Deposits, Geodynamics and Conditions of Formation: A Perspective View

DOI: 10.4236/ojg.2017.711113, PP. 1690-1709

Keywords: Gold, Tectonic, Porphyry, Epithermal, Skarns, Placer

Full-Text   Cite this paper   Add to My Lib

Abstract:

Gold occurs in a wide range of deposit types and settings. In the last decade, significant progress has been made in the definition, classification, characterization, thereby aiding understanding of the main gold deposit types. The present work aims to provide an update on the current state of knowledge on the different types of gold deposits models, geodynamics, their mode of formation and the condition suitable for their formation Several subsets of gold deposits are distinguished from one another on the bases of and their main geological models and their mode of formation described. Gold deposits of magmatic-hydrothermal origin are classified into Porphyry, Epithermal, Skarn, Iron Oxide-Copper-Gold and Intrusion related deposits; those of hydrothermal origin are Orogenic, Volcanogenic Massive Sulphide deposits, and Carlin-type; while those of Sedimentary Origin are placers. In terms of the major Period of gold deposit formation, the Mesoarchean was the largest gold period. Other gold peaks followed, particularly in the Neoarchean, Paleoproterozoic and Paleozoic while numerous and diverse gold deposit types were formed during the Cenozoic era.Wide varieties of geodynamic contexts in which each of the gold deposits are formed being explained while the conditions favourable for its formation are also being summarized. With the recent rise in the price of gold, mining companies and research centers continue to provide lighting of the key geology features of then ore-forming environments and the key geologic manifestations of the different deposit types.

References

[1]  McDonough, W.F. and Sun, S.-S. (1995) The Composition of the Earth. Chemical Geology, 120, 223-253.
https://doi.org/10.1016/0009-2541(94)00140-4
[2]  Wood, B.J., Walter, M.J. and Wade, J. (2006) Accretion of the Earth and Segregation of Its Core. Nature, 441, 825-833.
https://doi.org/10.1038/nature04763
[3]  Frimmel, H.E. (2008) Earth’s Continental Crustal Gold Endowment. Earth and Planetary Science Letters, 267, 45-55.
https://doi.org/10.1016/j.epsl.2007.11.022
[4]  Rudnick, R.L. and Gao, S. (2003) Composition of the Continental Crust. In: Rudnick, R.L., Ed., Treatise on Geochemistry, Elsevier, Amsterdam, 1-64.
https://doi.org/10.1016/B0-08-043751-6/03016-4
[5]  Bierlein, F.P., Groves, D.I., Goldfarb, R.J. and Dubé, B. (2006a) Lithospheric Controls on the Formation of Provinces Hosting Giant Orogenic Gold Deposits. Mineralium Deposita, 40, 874-886.
https://doi.org/10.1007/s00126-005-0046-2
[6]  Bierlein, F.P., Stein, H.J., Coira, B. and Reynolds, P. (2006b) Timing of Gold and Crustal Evolution of the Palaeozoic South Central Andes, NW Argentina—Implications for the Endowment of Orogenic Belts. Earth and Planetary Science Letters, 245, 702-721.
https://doi.org/10.1016/j.epsl.2006.03.019
[7]  Sillitoe, R.H. (2010) Porphyry Copper Systems. Economic Geology, 105, 3-41.
https://doi.org/10.2113/gsecongeo.105.1.3
[8]  Bonham, H.F.J. (1989) Bulk Mineable Gold Deposits of the Western United States. In: Keays, R.R., Ramsay, W.R.H. and D.I., Eds., The Geology of Gold Deposits: The Perspective in 1988, Monograph 6, Economic Geology, 193-207.
[9]  Heald, P., Foley, N.K. and Hayba, D.O. (1987) Comparative Anatomy of Volcanichosted Epithermal Deposits: Acid-Sulphate and Adularia-Sericite Types. Economic Geology, 82, 1-26.
https://doi.org/10.2113/gsecongeo.82.1.1
[10]  Gebre-Mariam, M., Hagemann, S.G. and Groves, D.I. (1995) A Classification Scheme for Epigenetic Archean Lode-Gold Deposits. Mineralium Deposita, 30, 408-410.
https://doi.org/10.1007/BF00202283
[11]  Robert, F., Poulsen, K.H. and Dubé, B. (1997) Gold Deposits and Their Geological Classification. Gubins A.G., Ed., Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration, 209-220.
[12]  Le Mignot, E. (2014) Gold Deposits as Witnesses of History Geological Survey of the West African Craton-Contribution of Dating. Doctoral Thesis, University of Lorraine (Nancy), Lorraine, 339 p.
[13]  Goldfarb, R.J., Groves, D.I. and Gardoll, S. (2001) Orogenic Gold and Geologic Time: A Global Synthesis. Ore Geology Reviews, 18, 1-75.
https://doi.org/10.1016/S0169-1368(01)00016-6
[14]  Kirk, J., Ruiz, J., Chesley, J., Titley, S. and Walshe, J. (2001) A Detrital Model for the Origin of Gold and Sulfides in the Witwatersrand Basin Based on Re-Os Isotopes. Geochimica et Cosmochimica Acta, 65, 2149-2159.
https://doi.org/10.1016/S0016-7037(01)00588-9
[15]  Kirk, J., Ruiz, J., Chesley, J., Walshe, J. and England, G. (2002) A Major Archean, Goldand Crust-Forming Event in the Kaapvaal Craton, South Africa. Science, 297, 1856-1858.
https://doi.org/10.1126/science.1075270
[16]  Frimmel, H.E., Groves, D.I., Kirk, J., Ruiz, J., Chesley, J. and Minter, W.E.L. (2005) The Formation and Preservation of the Witwatersrand Goldfields, the World’s Largest Gold Province. Economic Geology, 100, 769-797.
[17]  Xiong, Y. and Wood, S.A. (2000) Experimental Quantification of Hydrothermal Solubility of Platinum-Group Elements with Special Reference to Porphyry Copper Environments. Mineralogy and Petrology, 68, 1-28.
https://doi.org/10.1007/s007100050001
[18]  Glikson, A.Y. (2001) The Astronomical Connection of Terrestrial Evolution: Crustal Effects of Post-3.8 Ga Mega-Impact Clusters and Evidence for Major 3.2 ± 0.1 Ga Bombardment of the Earth-Moon System. Journal of Geodynamics, 32, 205-229.
https://doi.org/10.1016/S0264-3707(01)00029-1
[19]  Brenan, J.M., McDonough, W.F. and Ash, R. (2005) An Experimental Study of the Solubility and Partitioning of Iridium, Osmium and Gold between Olivine and Silicate Melt. Earth and Planetary Science Letters, 237, 855-872.
https://doi.org/10.1016/j.epsl.2005.06.051
[20]  Labrosse, S. and Jaupart, C. (2007) Thermal Evolution of the Earth: Secular Changes and Fluctuations of Plate Characteristics. Earth and Planetary Science Letters, 260, 465-481.
https://doi.org/10.1016/j.epsl.2007.05.046
[21]  Sinclair, W.D. (2007) Porphyry Deposits. In: Goodfellow, W.D., Ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, The Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, 223-243.
[22]  Bierlein, F.P., Groves, D.I. and Cawood, P.A. (2009) Metallogeny of Accretionary Orogens—The Connection between Lithospheric Processes and Metal Endowment. Ore Geology Reviews, 36, 282-292.
https://doi.org/10.1016/j.oregeorev.2009.04.002
[23]  Hedenquist, J.W. and Lowenstern, J.B. (1994) The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 370, 519-527.
https://doi.org/10.1038/370519a0
[24]  White, N.C. and Hedenquist, J.W. (1995) Epithermal Gold Deposits: Styles, Characteristics and Exploration. SEG Newsletter, 23, 9-13.
[25]  Hedenquist, J.W., Izawa, E., Arribas, A. and White, N.C. (1996) Epithermal Gold Deposits: Styles, Characteristics, and Exploration. Society of Resource Geology Ressource Geology Special Publication No. 1, 17 p.
[26]  Simmons, S.F. (1995) Magmatic Contribution to Low-Sulfidation Epithermal Deposits. Mineralogical Association of Canada Short Course Series: Magmatic, Fluids, and Ore Deposits, 23, 455-477.
[27]  Arribas, A. (1995) Characteristics of High-Sulfidation Epithermal Deposits, and Their Relation to Magmatic Fluids. Mineralogical Association of Canada Short Course Series: Magmatic, Fluids, and Ore Deposits, 23, 419-454.
[28]  Henley, R.W. and Berger, B.R. (2011) Magmatic-Vapor Expansion and the Formation of High-Sulfidation Gold Deposits: Chemical Controls on Alteration and Mineralization. Ore Geology Reviews, 39, 63-74.
https://doi.org/10.1016/j.oregeorev.2010.11.003
[29]  Einaudi, M.T. and Burt, D.M. (1982) Introduction; Terminology, Classification, and Composition of Skarn Deposits. Economic Geology, 77, 745-754.
https://doi.org/10.2113/gsecongeo.77.4.745
[30]  Meinert, L.D., Lentz, D.R. and Newberry, R.J. (2000) Special Issue Devoted to Skarn Deposits. Economic Geology, 95, 1183-1370.
https://doi.org/10.2113/gsecongeo.95.6.1183
[31]  Chen, Y.-J., Chen, H.-Y., Zaw, K., Pirajno, F. and Zhang, Z.-J. (2007) Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China: An Overview. Ore Geology Reviews, 31, 139-169.
https://doi.org/10.1016/j.oregeorev.2005.01.001
[32]  Dill, H.G. (2010) The “Chessboard” Classification Scheme of Mineral Depositsμ Mineralogy and Geology from Aluminum to Zirconium. Earth Science Reviews, 100, 1-420.
https://doi.org/10.1016/j.earscirev.2009.10.011
[33]  Pigois, J.-P., Groves, D.I., Fletcher, I.R., McNaughton, N.J. and Snee, L.W. (2003) Age Constraints on Tarkwaian Palaeoplacer and Lode-Gold Formation in the Tarkwa-Damang District, SW Ghana. Mineralium Deposita, 38, 695-714.
https://doi.org/10.1007/s00126-003-0360-5
[34]  Hitzman, M.W., Oreskes, N. and Einaudi, M.T. (1992) Geological Characteristics and Tectonic Setting of Proterozoic Iron Oxide (Cu-U-Au-REE) Deposits. Precambrian Research, 58, 241-287.
https://doi.org/10.1016/0301-9268(92)90121-4
[35]  Kerrich, R., Goldfarb, R., Groves, D., Garwin, S. and Jia, Y. (2000) The Characteristics, Origins, and Geodynamic Settings of Supergiant Gold Metallogenic Provinces. Science in China Series D: Earth Sciences, 43, 1-68.
https://doi.org/10.1007/BF02911933
[36]  Hitzman, M.W. (2000) Iron Oxide-Cu-Au Deposits: What, Where, When, and Why. In: Porter, T.M., Ed., Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, Australian Mineral Foundation, Adelaide, 9-25.
[37]  Sillitoe, R.H. (2003) Iron Oxide-Copper-Gold Deposits: An Andean View. Mineralium Deposita, 38, 787-812.
https://doi.org/10.1007/s00126-003-0379-7
[38]  Thompson, J.F.H., Sillitoe, R.H., Baker, T., Lang, J.R. and Mortensen, J.K. (1999) Intrusionrelated Gold Deposits Associated with Tungsten-Tin Provinces. Mineralium Deposita, 34, 323-334.
https://doi.org/10.1007/s001260050207
[39]  Maloof, T.L., Baker, T. and Thompson, J.F. (2001) The Dublin Gulch Intrusion-Hosted Gold Deposit, Tombstone Plutonic Suite, Yukon Territory, Canada. Mineralium Deposita, 36, 583-593.
https://doi.org/10.1007/s001260100190
[40]  Hart, C.J.R. and Goldfarb, R.J. (2005) Distinguishing Intrusion-Related from Orogenic Gold Systems. New Zealand Minerals Conference Proceedings, Australasian Institute of Mining and Metallurgy, Melbourne, Victoria, 125-133.
[41]  Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G. and Robert, F. (1998) Orogenic Gold Deposits: A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types. Ore Geology Reviews, 13, 7-27.
https://doi.org/10.1016/S0169-1368(97)00012-7
[42]  McCuaig, C. and Kerrich, R. (1998) P-T-t-Deformation-Fluid Characteristics of Lode Gold Deposits: Evidence from Alteration Systematics. Ore Geology Reviews, 12, 381-453.
https://doi.org/10.1016/S0169-1368(98)00010-9
[43]  Pitcairn, I.K., Craw, D. and Teagle, D.A.H. (2014) Metabasalts as Sources of Metals in Orogenic Gold Deposits. Mineralium Deposita, 1-18. [In Press]
[44]  Herrington, R., Maslennikov, V., Zaykov, V., Seravkin, I., Kosarev, A., Buschmann, B., Orgeval, J.-J., Holland, N., Tesalina, S., Nimis, P., et al. (2005) 6: Classification of VMS Deposits: Lessons from the South Uralides. Ore Geology Reviews, 27, 203-237.
https://doi.org/10.1016/j.oregeorev.2005.07.014
[45]  Franklin, J.M., Gibson, H.L., Jonasson, I.R. and Galley, A.G. (2005) Volcanogenic Massive Sulfide Deposits. Economic Geology 100th Anniversary Volume, 523-560.
[46]  Hannington, M.D., de Ronde, C.E.J. and Petersen, S. (2005) Sea-Floor Tectonics and Submarine Hydrothermal Systems. Economic Geology 100th Anniversary Volume, 111-141.
[47]  Hannington, M.D., Poulsen, K.H., Thompson, J.F.H. and Sillitoe, R.H. (1999) Volcanogenic Gold in the Massive Sulfide Environment. In: Barrie, C.T. and Hannington, M.D., Eds., Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings, GeoScienceWorld, 325-356.
[48]  Mercier-Langevin, P., Hannington, M.D., Dubé, B. and Bécu, V. (2011) The Gold Content of Volcanogenic Massive Sulfide Deposits. Mineralium Deposita, 46, 509-539.
https://doi.org/10.1007/s00126-010-0300-0
[49]  Hofstra, A.H. and Cline, J.S. (2000) Characteristics and Models for Carlin-Type Gold deposits. In: Hagemann, S.G. and Brown, P.E., Eds., Gold in 2000, Society of Economic Geologists, 163-220.
[50]  Emsbo, P., Groves, D.I., Hofstra, A.H. and Bierlein, F.P. (2006) The Giant Carlin Gold Province: A Protracted Interplay of Orogenic, Basinal, and Hydrothermal Processes above a Lithospheric Boundary. Mineralium Deposita, 41, 517-525.
https://doi.org/10.1007/s00126-006-0085-3
[51]  Peters, S.G. (2004) Syn-Deformational Features of Carlin-Type Au Deposits. Journal of Structural Geology, 26, 1007-1023.
https://doi.org/10.1016/j.jsg.2003.11.018
[52]  Kuehn, C.A. and Rose, A.W. (1995) Carlin Gold Deposits, Nevada; Origin in a Deep Zone of Mixing between Normally Pressured and Overpressured Fluids. Economic Geology, 90, 17-36.
https://doi.org/10.2113/gsecongeo.90.1.17
[53]  Kesler, S.E., Riciputi, L.C. and Ye, Z. (2005) Evidence for a Magmatic Origin for Carlin Type Gold Deposits: Isotopic Composition of Sulfur in the Betze-Post-Screamer Deposit, Nevada, USA. Mineralium Deposita, 40, 127-136.
https://doi.org/10.1007/s00126-005-0477-9
[54]  Rui-Zhong, H., Wen-Chao, S., Xian-Wu, B., Guang-Zhi, T. and Hofstra, A.H. (2002) Geology and Geochemistry of Carlin-Type Gold Deposits in China. Mineralium Deposita, 37, 378-392.
https://doi.org/10.1007/s00126-001-0242-7
[55]  Laznicka, P. (2006) Giant Metallic Deposits-Future Sources of Industrial Metals. Springer, Berlin, 732 p.
[56]  Hallbauer, D.K. and Barton, J.M. (1987) The Fossil Gold Placers of the Witwatersrand. Gold Bulletin, 20, 68-79.
https://doi.org/10.1007/BF03214660
[57]  Phillips, N.G. and Law, J.D.M. (1994) Metamorphism of the Witwatersrand Gold Fields: A Review. Ore Geology Reviews, 9, 1-31.
https://doi.org/10.1016/0169-1368(94)90017-5
[58]  Barnicoat, A.C., Henderson, I.H.C., Knipe, R.J., Yardley, B.W.D., Napier, R.W., Fox, N.P.C., Kenyon, A.K., Muntingh, D.J., Strydom, D., Winkler, K.S., et al. (1997) Hydrothermal Gold Mineralization in the Witwatersrand Basin. Nature, 386, 820-824.
https://doi.org/10.1038/386820a0
[59]  Mathur, R., Gauert, C., Ruiz, J. and Linton, P. (2013) Evidence for Mixing of Re-Os Isotopes at <2.7 Ga and Support of a Remobilized Placer Model in Witwatersrand Sulfides and Native Au. Lithos, 164-167, 65-73.
https://doi.org/10.1016/j.lithos.2012.11.015
[60]  Sestini, G. (1973) Sedimentology of a Plaeoplacer: Tho Gold-Bearing Tarkwain of Ghana. In: Amstutz, G.C. and Bernard, A.J., Eds., Ores in Sediments, Springer-Verlag, Heidelberg, 275-305.
https://doi.org/10.1007/978-3-642-65329-2_21
[61]  Davis, D.W., Hirdes, W., Schaltegger, U. and Nunoo, E.A. (1994) U-Pb Age Constraints on Deposition and Provenance of Birimian and Gold-Bearing Tarkwaian Sediments in Ghana, West Africa. Precambrian Research, 67, 89-107.
https://doi.org/10.1016/0301-9268(94)90006-X
[62]  Oberthür, T., Vetter, U., Davis, D.W. and Amanor, J.A. (1998) Age Constraints on Gold Mineralization and Paleoproterozoic Crustal Evolution in the Ashanti Belt of Southern Ghana. Precambrian Research, 89, 129-143.
https://doi.org/10.1016/S0301-9268(97)00075-2
[63]  Milési, J.P., Ledru, P., Marcoux, E., Mougeot, R., Johan, V., Lerouge, C., Sabaté, P., Bailly, L., Respaut, J.P. and Skipwith, P. (2002) The Jacobina Paleoproterozoic Gold-Bearing Conglomerates, Bahia, Brazilμ a “Hydrothermal Shear-Reservoir” Model. Ore Geology Reviews, 19, 95-136.
https://doi.org/10.1016/S0169-1368(01)00038-5
[64]  Meier, D.L., Heinrich, C.A. and Watts, M.A. (2009) Mafic Dikes Displacing Witwatersrand Gold Reefs: Evidence against Metamorphic-Hydrothermal Ore Formation. Geology, 37, 607-610.
https://doi.org/10.1130/G25657A.1
[65]  Phillips, N.G. and Law, J.D.M. (1994) Metamorphism of the Witwatersrand Gold Fields: A Review. Ore Geology Reviews, 9, 1-31.
https://doi.org/10.1016/0169-1368(94)90017-5
[66]  Ruiz, J., Valencia, V.A., Chesley, J.T., Kirk, J., Gehrels, G. and Frimmel, H. (2006) Thesource of Gold for the Witwatersrand from Re-Os and U-Pb Detrital Zircon Geochronology. Geochimica and Cosmochimica Acta, 70, A543.
https://doi.org/10.1016/j.gca.2006.06.1002
[67]  Schaefer, B.F., Pearson, D.G., Rogers, N.W. and Barnicoat, A.C. (2010) Re-Os Isotope and PGE Constraints on the Timing and Origin of Gold Mineralisation in the Witwatersrand Basin. Chemical Geology, 276, 88-94.
https://doi.org/10.1016/j.chemgeo.2010.06.001
[68]  Goldfarb, R.J., Phillips, G.N. and Nokleberg, W.J. (1998) Tectonic Setting of Synorogenic Gold Deposits of the Pacific Rim. Ore Geology Reviews, 13, 185-218.
https://doi.org/10.1016/S0169-1368(97)00018-8
[69]  Goryachev, N.A. and Pirajno, F. (2014) Gold Deposits and Gold Metallogeny of Far East Russia. Ore Geology Reviews, 59, 123-151.
https://doi.org/10.1016/j.oregeorev.2013.11.010
[70]  Goldfarb, R., Baker, T., Dubé, B., Groves, D.I., Hart, C.J.R. and Gosselin, P. (2005) Distribution, Character, and Genesis of Gold Deposits in Metamorphic Terranes. Economic Geology 100th Anniversary Volume, 407-450.
[71]  Dubé, B. and Gosselin, P. (2007) Greenstone-Hosted Quartz-Carbonate Vein Deposits. In: Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods, Geological Association of Canada, Mineral Deposits Division, 49-73.
[72]  Condie, K.C. (2000) Episodic Continental Growth Models: Afterthoughts and Extensions. Tectonophysics, 322, 153-162.
https://doi.org/10.1016/S0040-1951(00)00061-5
[73]  Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S. and Storey, C.D. (2010) The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167, 229-248.
https://doi.org/10.1144/0016-76492009-072

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133