全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Application of Bioreactor in Stem Cell Culture

DOI: 10.4236/jbise.2017.1011037, PP. 485-499

Keywords: Stem Cells, Bioreactor, Culture, Large-Scale, Biomedical Application

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stem cells (SCs), the undifferentiated biological cells, have the infinite capacity to self-renew and the pluripotent ability to differentiate. SCs and their derived products offer great promise for biomedical applications such as cell therapy, tissue engineering, regenerative medicine and drug screening. However, the clinical applications of SCs require a large amount of SCs with high quality and the number of SCs from their tissue resources is very limited. Large-scale expansion is needed to generate homogeneous SCs with good biological characteristics for clinical application. This necessitates a bioreactor system to provide controllable and stable conditions for stem cell (SC) culture. Traditional methods of bioreactor for maintenance and expansion of cells rely on two-dimensional (2-D) culture techniques, leading to loss self-renewal ability and differentiation capacity upon long-term culture. New approaches for SC expansion with bioreactor employ three-dimensional (3-D) cell growth to mimic their environment in vivo. In this review, we summarize the application of bioreactors in SC culture.

References

[1]  Hoban, M.D. and Bauer, D.E. (2016) A Genome Editing Primer for the Hematologist. Blood, 127, 2525-2535.
https://doi.org/10.1182/blood-2016-01-678151
[2]  Vassena, R., Heindryckx, B., Peco, R., et al. (2016) Genome Engineering through CRISPR/Cas9 Technology in the Human Germline and Pluripotent Stem Cells. Human Reproduction Update, 22, 411-419.
https://doi.org/10.1093/humupd/dmw005
[3]  Lancaster, M.A., Renner, M., Martin, C.A., et al. (2013) Cerebral Organoids Model Human Brain Development and Microcephaly. Nature, 501, 373-379.
https://doi.org/10.1038/nature12517
[4]  Sun, Y., Yong, K.M., Villa-Diaz, L.G., et al. (2014) Hippo/YAP-Mediated Rigidity-Dependent Motor Neuron Differentiation of Human Pluripotent Stem Cells. Nature Materials, 13, 599-604.
https://doi.org/10.1038/nmat3945
[5]  Ortmann, D. and Vallier, L. (2017) Variability of Human Pluripotent Stem Cell Lines. Current Opinion in Genetics & Development, 46, 179-185.
https://doi.org/10.1016/j.gde.2017.07.004
[6]  Krause, D.S., Scadden, D.T. and Preffer, F.I. (2013) The Hematopoietic Stem Cell Niche—Home for Friend and Foe? Cytometry. Part B, Clinical Cytometry, 84, 7-20.
https://doi.org/10.1002/cyto.b.21066
[7]  Morrison, S.J. and Scadden, D.T. (2014) The Bone Marrow Niche for Haematopoietic Stem Cells. Nature, 505 327-334.
https://doi.org/10.1038/nature12984
[8]  Choi, J.S., Mahadik, B.P. and Harley, B.A. (2015) Engineering the Hematopoietic Stem Cell Niche: Frontiers in Biomaterial Science. Biotechnology Journal, 10, 1529-1545.
https://doi.org/10.1002/biot.201400758
[9]  Turksen, K. (2016) Bioreactors in Stem Cell Biology. Methods Mol Biol, 1502. Humana Press.
[10]  Dos Santos, F., Campbell, A., Fernandes-Platzgummer, A., et al. (2014) A Xenogeneic-Free Bioreactor System for the Clinical-Scale Expansion of Human Mesenchymal Stem/Stromal Cells. Biotechnology and Bioengineering, 111, 1116-1127.
https://doi.org/10.1002/bit.25187
[11]  Collins, P.C., Miller, W.M. and Papoutsakis, E.T. (1998) Stirred Culture of Peripheral and Cord Blood Hematopoietic Cells Offers Advantages over Traditional Static Systems for Clinically Relevant Applications. Biotechnology and Bioengineering, 59, 534-543.
https://doi.org/10.1002/(SICI)1097-0290(19980905)59:5<534::AID-BIT2>3.0.CO;2-B
[12]  He, W., Ye, L., Li, S., et al. (2012) Stirred Suspension Culture Improves Embryoid Body Formation and Cardiogenic Differentiation of Genetically Modified Embryonic Stem Cells. Biological and Pharmaceutical Bulletin, 35, 308-316.
https://doi.org/10.1248/bpb.35.308
[13]  Tsai, A.C., Liu, Y., Yuan, X., et al. (2017) Aggregation Kinetics of Human Mesenchymal Stem Cells under Wave Motion. Biotechnology Journal, 12.
https://doi.org/10.1002/biot.201600448
[14]  Singh, V. (1999) Disposable Bioreactor for Cell Culture Using Wave-Induced Agitation. Cytotechnology, 30, 149-158.
https://doi.org/10.1023/A:1008025016272
[15]  Begley, C.M. and Kleis, S.J. (2000) The Fluid Dynamic and Shear Environment in the NASA/JSC Rotating-Wall Perfused-Vessel Bioreactor. Biotechnology and Bioengi-neering, 70, 32-40.
https://doi.org/10.1002/1097-0290(20001005)70:1<32::AID-BIT5>3.0.CO;2-V
[16]  Liu, Y., Liu, T., Fan, X., et al. (2006) Ex Vivo Expansion of Hematopoietic Stem Cells Derived from Umbilical Cord Blood in Rotating Wall Vessel. Journal of Biotechnology, 124, 592-601.
https://doi.org/10.1016/j.jbiotec.2006.01.020
[17]  De Napoli, I.E., Scaglione, S., Giannoni, P., et al. (2011) Mesenchymal Stem Cell Culture in Convection-Enhanced Hollow Fibre Membrane Bioreactors for Bone Tiss. Fuel and Energy Abstracts.
[18]  Gerlach, J.C., Lin, Y.C., Brayfield, C.A., et al. (2012) Adipogenesis of Human Adipose-Derived Stem Cells within Three-Dimensional Hollow Fiber-Based Bioreactors. Tissue Engineering, Part C Methods, 18, 54-61.
https://doi.org/10.1089/ten.tec.2011.0216
[19]  Amit, M., Chebath, J., Margulets, V., et al. (2010) Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 6, 248-259.
https://doi.org/10.1007/s12015-010-9149-y
[20]  Elanzew, A., Sommer, A., Pusch-Klein, A., et al. (2015) A Reproducible and Versatile System for the Dynamic Expansion of Human Pluripotent Stem Cells in Suspension. Biotechnology Journal, 10, 1589-1599.
https://doi.org/10.1002/biot.201400757
[21]  Khosrowshahi, Y.B., Khoshfetrat, A.B., Abolghasemi, Z. and Shams Asenjan, K. (2015) Performance Evaluation of a Proliferation Chamber with External Stirred Conditioning Tank for Expansion of a Suspendable Stem Cell Model. Process Biochemistry, 50, 1110-1118.
https://doi.org/10.1016/j.procbio.2015.04.009
[22]  King, J.A. and Miller, W.M. (2007) Bioreactor Development for Stem Cell Expansion and Controlled Differentiation. Current Opinion in Chemical Biology, 11, 394-398.
https://doi.org/10.1016/j.cbpa.2007.05.034
[23]  Yeatts, A.B. and Fisher, J.P. (2011) Bone Tissue Engineering Bioreactors: Dynamic Culture and the Influence of Shear Stress. Bone, 48, 171-181.
https://doi.org/10.1016/j.bone.2010.09.138
[24]  Plett, P.A., Abonour, R., Frankovitz, S.M. and Orschell, C.M. (2004) Impact of Modeled Microgravity on Migration, Differentiation, and Cell Cycle Control of Primitive Human Hematopoietic Progenitor Cells. Experimental Hematology, 32, 773-781.
https://doi.org/10.1016/j.exphem.2004.03.014
[25]  Schwarz, R.P., Goodwin, T.J. and Wolf, D.A. (1992) Cell Culture for Three-Dimensional Modeling in Rotating-Wall Vessels: An Application of Simulated Microgravity. Journal of Tissue Culture Methods, 14, 51-57.
https://doi.org/10.1007/BF01404744
[26]  Nold, P., Brendel, C., Neubauer, A., et al. (2013) Good Manufacturing Practice-Compliant Animal-Free Expansion of Human Bone Marrow Derived Mesenchymal Stroma Cells in a Closed Hollow-Fiber-Based Bioreactor. Biochemical and Biophysical Research Communications, 430, 325-330.
https://doi.org/10.1016/j.bbrc.2012.11.001
[27]  Hanley, P.J., Mei, Z., Durett, A.G., et al. (2014) Efficient Manufacturing of Therapeutic Mesenchymal Stromal Cells with the Use of the Quantum Cell Expansion System. Cytotherapy, 16, 1048-1058.
https://doi.org/10.1016/j.jcyt.2014.01.417
[28]  Lambrechts, T., Papantoniou, I., Rice, B., et al. (2016) Large-Scale Progenitor Cell Expansion for Multiple Donors in A Monitored Hollow Fibre Bioreactor. Cytotherapy, 18, 1219-1233.
https://doi.org/10.1016/j.jcyt.2016.05.013
[29]  Lambrechts, T., Papantoniou, I., Viazzi, S., et al. (2016) Evaluation of a Monitored Multiplate Bioreactor for Large-Scale Expansion of Human Periosteum Derived Stem Cells for Bone Tissue Engineering Applications. Biochemical Engineering Journal, 108, 58-68.
https://doi.org/10.1016/j.bej.2015.07.015
[30]  Bratt-Leal, A.M., Kepple, K.L., Carpenedo, R.L., et al. (2011) Magnetic Manipulation and Spatial Patterning of Multi-Cellular Stem Cell Aggregates. Integrative Biology (Camb), 3, 1224-1232.
https://doi.org/10.1039/c1ib00064k
[31]  Liu, H., Lin, J. and Roy, K. (2006) Effect of 3D Scaffold and Dynamic Culture Condition on the Global Gene Expression Profile of Mouse Embryonic Stem Cells. Biomaterials, 27, 5978-5989.
https://doi.org/10.1016/j.biomaterials.2006.05.053
[32]  Meinel, L., Karageorgiou, V., Fajardo, R., et al. (2004) Bone Tissue Engineering Using Human Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow. Annals of Biomedical Engineering, 32, 112-122.
https://doi.org/10.1023/B:ABME.0000007796.48329.b4
[33]  Hosseinkhani, H., Azzam, T., Kobayashi, H., et al. (2006) Combination of 3D Tissue Engineered Scaffold and Non-Viral Gene Carrier Enhance In Vitro DNA Expression of Mesenchymal Stem Cells. Biomaterials, 27, 4269-4278.
https://doi.org/10.1016/j.biomaterials.2006.02.033
[34]  Ertl, P., Sticker, D., Charwat, V., et al. (2014) Lab-on-a-Chip Technologies for Stem Cell Analysis. Trends in Biotechnology, 32, 245-253.
https://doi.org/10.1016/j.tibtech.2014.03.004
[35]  Gupta, K., Kim, D.-H., Ellison, D., et al. (2010) Lab-on-a-Chip Devices as an Emerging Platform for Stem Cell Biology. Lab on a Chip, 10, 2019-2031.
https://doi.org/10.1039/c004689b
[36]  Faley, S.L., Copland, M., Wlodkowic, D., et al. (2009) Microfluidic Single Cell Arrays to Interrogate Signalling Dynamics of Individual, Patient-Derived Hematopoietic Stem Cells. Lab Chip, 9, 2659-2664.
https://doi.org/10.1039/b902083g
[37]  Kamei, K., Guo, S., Yu, Z.T., et al. (2009) An Integrated Microfluidic Culture Device for Quantitative Analysis of Human Embryonic Stem Cells. Lab Chip, 9, 555-563.
https://doi.org/10.1039/B809105F
[38]  Villa-Diaz, L.G., Torisawa, Y.S., Uchida, T., et al. (2009) Microfluidic Culture of Single Human Embryonic Stem Cell Colonies. Lab Chip, 9, 1749-1755.
https://doi.org/10.1039/b820380f
[39]  Kim, C., Lee, K.S., Bang, J.H., et al. (2011) 3-Dimensional Cell Culture for On-Chip Differentiation of Stem Cells in Embryoid Body. Lab Chip, 11, 874-882.
https://doi.org/10.1039/c0lc00516a
[40]  Zhang, Y.X., Wang, Z.Y., Farhangfar, F. and Zimmerman, M. (2017) In Vitro Evaluation of Anticancer Drugs with Kinetic and Static Alternating Cell Culture System. Journal of Cancer Therapy, 08, 845-859.
https://doi.org/10.4236/jct.2017.89074
[41]  Zhang, Y. and Wang, Y. (2016) Cancer Specific CTL Expansion with ZYX Bioreactor. Journal of Clinical & Cellular Immunology, 7, 398.
[42]  Mohyeldin, A., Garzon-Muvdi, T. and Quinones-Hinojosa, A. (2010) Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche. Cell Stem Cell, 7, 150-161.
https://doi.org/10.1016/j.stem.2010.07.007
[43]  Fotia, C., Massa, A., Boriani, F., et al. (2015) Hypoxia Enhances Proliferation and Stemness of Human Adipose-Derived Mesenchymal Stem Cells. Cytotechnology, 67, 1073-1084.
https://doi.org/10.1007/s10616-014-9731-2
[44]  Parmar, K., Mauch, P., Vergilio, J.A., et al. (2007) Distribution of Hematopoietic Stem Cells in the Bone Marrow According to Regional Hypoxia. Proceedings of the National Academy of Sciences USA, 104, 5431-5436.
https://doi.org/10.1073/pnas.0701152104
[45]  Mantel, C.R., O'Leary, H.A., Chitteti, B.R., et al. (2015) Enhancing Hematopoietic Stem Cell Transplantation Efficacy by Mitigating Oxygen Shock. Cell, 161, 1553-1565.
https://doi.org/10.1016/j.cell.2015.04.054
[46]  Grayson, W.L., Zhao, F., Bunnell, B. and Ma, T. (2007) Hypoxia Enhances Proliferation and Tissue Formation of Human Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 358, 948-953.
https://doi.org/10.1016/j.bbrc.2007.05.054
[47]  Dos Santos, F., Andrade, P.Z., Boura, J.S., et al. (2010) Ex Vivo Expansion of More Effective Cell Proliferation Kinetics and Metabolism under Hypoxia. Journal of Cellular Physiology, 223, 27-35.
[48]  Fernandes, A.M., Fernandes, T.G., Diogo, M.M., et al. (2007) Mouse Embryonic Stem Cell Expansion in a Microcarrier-Based Stirred Culture System. Journal of Biotechnology, 132, 227-236.
https://doi.org/10.1016/j.jbiotec.2007.05.031
[49]  Sen, A., Kallos, M.S., Behie, L.A. (2002) Expansion of Mammalian Neural Stem Cells in Bioreactors: Effect of Power Input and Medium Viscosity. Brain Research. Developmental Brain Research, 134, 103-113.
https://doi.org/10.1016/S0165-3806(01)00328-5
[50]  Fernandes-Platzgummer, A., Diogo, M.M., Baptista, R.P., et al. (2011) Scale-Up of Mouse Embryonic Stem Cell Expansion in Stirred Bioreactors. Biotechnology Progress, 27, 1421-1432.
https://doi.org/10.1002/btpr.658
[51]  Heathman, T.R., Glyn, V.A., Picken, A., et al. (2015) Expansion, Harvest and Cryopreservation of Human Mesenchymal Stem Cells in a Serum-Free Microcarrier Process. Biotechnology and Bioengineering, 112, 1696-1707.
https://doi.org/10.1002/bit.25582
[52]  Mizukami, A., Fernandes-Platzgummer, A., Carmelo, J.G., et al. (2016) Stirred Tank Bioreactor Culture Combined with Serum-/Xenogeneic-Free Culture Medium Enables an Efficient Expansion of Umbilical Cord-Derived Mesenchymal Stem/Stromal Cells. Biotechnology Journal, 11, 1048-1059.
https://doi.org/10.1002/biot.201500532
[53]  Santos, F., Andrade, P.Z., Abecasis, M.M., et al. (2011) Toward a Clinical-Grade Expansion of Mesenchymal Stem Cells from Human Sources: A Microcarrier-Based Culture System under Xeno-Free Conditions. Tissue Engineering, Part C Methods, 17, 1201-1210.
https://doi.org/10.1089/ten.tec.2011.0255
[54]  Csaszar, E., Kirouac, D.C., Yu, M., et al. (2012) Rapid Expansion of Human Hematopoietic Stem Cells by Automated Control of Inhibitory Feedback Signaling. Cell Stem Cell, 10, 218-229.
https://doi.org/10.1016/j.stem.2012.01.003
[55]  Bardy, J., Chen, A.K., Lim, Y.M., et al. (2013) Microcarrier Suspension Cultures for High-Density Expansion and Differentiation of Human Pluripotent Stem Cells to Neural Progenitor Cells. Tissue Engineering, Part C Methods, 19, 166-180.
https://doi.org/10.1089/ten.tec.2012.0146
[56]  Frauenschuh, S., Reichmann, E., Ibold, Y., et al. (2007) A Microcarrier-Based Cultivation System for Expansion of Primary Mesenchymal Stem Cells. Biotechnology Progress, 23, 187-193.
https://doi.org/10.1021/bp060155w
[57]  Chen, A.K., Chen, X., Choo, A.B., et al. (2010) Expansion of Human Embryonic Stem Cells on Cellulose Microcarriers. Current Protocols in Stem Cell Biology, Chapter 1, Unit 1C 11.
[58]  Leung, H.W., Chen, A., Choo, A.B.H., Reuveny, S. and Oh, S.K.W. (2010) Agitation Can Induce Differentiation of Human Pluripotent Stem Cells in Microcarrier Cultures. Tissue Engineering Part C: Methods, 17, 165-172.
https://doi.org/10.1089/ten.tec.2010.0320
[59]  Park, Y., Chen, Y., Ordovas, L. and Verfaillie, C.M. (2014) Hepatic Differentiation of Human Embryonic Stem Cells on Microcarriers. Journal of Biotechnology, 174, 39-48.
https://doi.org/10.1016/j.jbiotec.2014.01.025
[60]  dos Santos, F.F., Andrade, P.Z., da Silva, C.L. and Cabral, J.M. (2013) Bioreactor Design for Clinical-Grade Expansion of Stem Cells. Biotechnology Journal, 8, 644-654.
https://doi.org/10.1002/biot.201200373
[61]  Zhang, Y.X., et al. (2016) Cancer Specific CTL Expansion with ZYX Bioreactor. Journal of Clinical & Cellular Immunology, 7, 398.
https://doi.org/10.4172/2155-9899.1000398
[62]  Fan, Y., Zhang, F. and Tzanakakis, E.S. (2017) Engineering Xeno-Free Microcarriers with Recombinant Vitronectin, Albumin and UV Irradiation for Human Pluripotent Stem Cell Bioprocessing. ACS Biomaterials Science & Engineering, 3, 1510-1518.
https://doi.org/10.1021/acsbiomaterials.6b00253
[63]  Lin, C.-Y., Huang, C.-H., Wu, Y.-K., et al. (2014) Maintenance of Human Adipose Derived Stem Cell (hASC) Differentiation Capabilities Using a 3D Culture. Biotechnology Letters, 36, 1529-1537.
https://doi.org/10.1007/s10529-014-1500-y
[64]  Yongxin Zhang FF, Wang, Y., et al. (2017) Assessment of Differentiation States of Hematopoietic Stem Cells Following In Vitro Culture Using Side and Forward Scatter of Flow Cytometry. World Journal of Research and Review, 5, 75-83.
[65]  Sutherland, D.R., Anderson, L., Keeney, M., et al. (1996) The ISHAGE Guidelines for CD34+ Cell Determination by Flow Cytometry. International Society of Hematotherapy and Graft Engineering. Journal of Hematotherapy, 5, 213-226.
https://doi.org/10.1089/scd.1.1996.5.213

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133