It has been found that microwave assisted decarboxylation of malonic acid derivatives can be achieved under solvent-free and catalyst free conditions. This new method produces the corresponding carboxylic acid in a pure manner and with a high yield in a very short reaction time: 3 - 10 min. In general terms, the condition under which this reaction is carried out accelerates the decarboxylation significantly of a series of disubstituted malonic acid derivatives, and makes this new process efficient, easy and environmentally friendly.
References
[1]
Lafrance, D., Bowles, P., Leeman, K. and Rafka, R. (2011) Mild Decarboxylative Activation of Malonic Acid Derivatives by 1,10-Carbonyldiimidazole. Organic Letters, 13, 2322-2325. https://doi.org/10.1021/ol200575c
[2]
Nakano, K., Ichikawa, Y. and Kotsuki, H. (2011) Efficient and Mild Procedure for the Decarboxylative Cyanomethyl Esterification of Arylmalonic Acids Using ClCH2CN/1,8-Diazabicyclo[5.4.0]undec-7-ene. Heterocycles, 83, 2773-2778.
https://doi.org/10.3987/COM-11-12363
[3]
Baruah, D. and Konwar, D. (2015) Cellulose Supported Copper Nanoparticles as a Versatile and Efficient Catalyst for the Protodecarboxylation and Oxidative Decarboxylation of Aromatic Acids Under Microwave Heating, Catalysis Communications, 69, 68-71. https://doi.org/10.1016/j.catcom.2015.05.029
[4]
Tellitu, I., Beitia, I., Díaz, M., Alonso, A., Moreno, I. and Domínguez, E. (2015) An Improved Solvent-Free System for the Microwave-Assisted Decarboxylation of Malonate Derivatives Based on the use of Imidazole. Tetrahedron, 71, 8251-8255.
https://doi.org/10.1016/j.tet.2015.09.012
[5]
Toussaint, O., Capdevielle, P. and Maumy, M. (1986) The Copper(I)-Catalyzed Decarboxylation of Malonic Acids: A new Mild and Quantitative Method. Synthesis, 12, 1029-1031. https://doi.org/10.1055/s-1986-31861
[6]
Kenyon, J. and Ross, W.A. (1951) The Mechanism of the Decarboxylation of Substituted Malonic Acid Derivatives. Journal of the Chemical Society, 3407-3411.
https://doi.org/10.1039/jr9510003407
[7]
Fraenkel, G., Belford, R.L. and Yankwich, P.E. (1954) Decarboxylation of Malonic Acid in Quinoline and Related Media. Journal of the American Chemical Society, 76, 15-18. https://doi.org/10.1021/ja01630a003
[8]
Clark, L.W.J. (1957) The Effect of Toluidines and Xylidine on Malonic Acid. The Journal of Physical Chemistry, 61, 1009-1010. https://doi.org/10.1021/j150553a042
[9]
Haleem, M.A. (1970) Kinetics of the Decarboxylation of Malonic Acid in Catechol. Collection of Czechoslovak Chemical Communications, 35, 2854-2857.
https://doi.org/10.1135/cccc19702854
[10]
Clark, L.W. (1960) The Decarboxylation of Malonic Acid in Acid Media. The Journal of Physical Chemistry, 64, 41-43. https://doi.org/10.1021/j100830a010
[11]
Calí, P. and Begtrup, M. (2002) Synthesis of Arylglycines by Reaction of Diethyl N-Boc-iminomalonate with Organomagnesium Reagents. Synthesis, 2002, 63-64.
[12]
Markowski, T., Drescher, S., Meister, A., Blume, A. and Dobner, B. (2014) Structure-Property Relationships in a Series of Diglycerol Tetraether Model Lipids and their Lyotropic Assemblies: the effect of Branching Topology and Chirality. Organic Biomolecular Chemistry, 30, 3649-3662. https://doi.org/10.1039/c4ob00048j
[13]
Zara, C.L., Jin, T. and Ciguere, R.J. (2000) Microwave Heating in Organic Synthesis: Decarboxylation of Malonic Acid Derivatives in Water. Synthetic Communications, 30, 2099-2104. https://doi.org/10.1080/00397910008087388
[14]
Helavi, V.B., Solabannavar, S.B., Desai, U.V. and Mane, R.B. (2003) Microwave Assisted Hydrolysis of Meldrum’s Acid Derivatives and Decarboxylation of Derived Malonic Acids. Journal of Chemical Research, Synopses, 2003, 174-175.
https://doi.org/10.3184/030823403103173390
[15]
Shimshoni, J.A., Bialer, M., Wlodarczyk, B., Finnell, R.H. and Yagen, B. (2007) Potent Anticonvulsant Urea Derivatives of Constitutional Isomers of Valproic Acid. Journal of Medical Chemistry, 50, 6419-6427. https://doi.org/10.1021/jm7009233
[16]
Phiel, C.J., Zhang, F., Huang, E.Y., Guenther, M.G., Lazar, M.A. and Klein, P.S. (2001) Histone Deacetylase Is a Direct Target of Valproic Acid, a Potent Anticonvulsant, Mood Stabilizer, and Teratogen. The Journal of Biological Chemistry, 279, 36734-36741. https://doi.org/10.1074/jbc.M101287200
[17]
Löscher, W. (2002) Basic Pharmacology of Valproate: A Review after 35 Years of Clinical Use for the Treatment of Epilepsy. CNS Drugs, 16, 669-694.
[18]
Chateauvieux, S., Morceau, F., Dicato, M. and Diederich, M. (2010) Molecular and Therapeutic Potential and Toxicity of Valproic Acid. Journal of Biomedicine and Biotechnology, 2010, Article ID: 479364. https://doi.org/10.1155/2010/479364
[19]
Hrebackova, J., Hrabeta, J. and Eckschlager, T. (2010) Valproic Acid in the Complex Therapy of Malignant Tumors. Current Drug Targets, 11, 361-379.
https://doi.org/10.2174/138945010790711923
[20]
Machado Ximenes, J.C., Lima Verde, E.C., Naffah-Mazzacoratti, M. da G. and Barros Viana, G.S. (2012) Valproic Acid, a Drug with Multiple Molecular Targets Related to Its Potential Neuroprotective Action. Neuroscience & Medicine, 3, 107-123.
https://doi.org/10.4236/nm.2012.31016
[21]
Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L. and Rousell, J. (1986) The Use of Microwave Ovens for Rapid Organic Synthesis. Tetrahedron Letters, 27, 279-282. https://doi.org/10.1016/S0040-4039(00)83996-9
[22]
Giguere, R.J., Bray, T.L. and Duncan, S.M. (1986) Application of Commercial Microwave Ovens to Organic Synthesis. Tetrahedron Letters, 27, 4945-4948.
https://doi.org/10.1016/S0040-4039(00)85103-5
[23]
De la Hoz, A., Díaz-Ortiz, A. and Moreno, A. (2005) Microwaves in Organic Synthesis. Thermal and Non-thermal Microwave Effects. Chemical Society Reviews, 34, 164-178. https://doi.org/10.1039/B411438H
[24]
Rathi, A.K., Gawande, M.B., Zboril, R. and Varma, R.S. (2015) Microwave-Assisted Synthesis-Catalytic Applications in Aqueous Media. Coordination Chemistry Reviews, 291, 68-94. https://doi.org/10.1016/j.ccr.2015.01.011
[25]
Perreux, L. and Loupy, A. (2001) A Tentative Rationalization of Microwave Effects in Organic Synthesis According to the Reaction Medium, and Mechanistic Considerations. Tetrahedron 57, 9199-9223.
https://doi.org/10.1016/S0040-4020(01)00905-X
[26]
Kappe, C.O. (2004) Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 43, 6250-6284.
https://doi.org/10.1002/anie.200400655
[27]
Anastas, P.T. and Kirchhoff, M.M. (2002) Origin, Current Status, and Future Challenges of Green Chemistry. Accounts of Chemical Research, 35, 686-694.
https://doi.org/10.1021/ar010065m
[28]
Polshettiwar, V. and Varma, R.S. (2008) Microwave-Assisted Organic Synthesis and Transformations using Benign Reaction Media. Accounts of Chemical Research, 41, 629-639. https://doi.org/10.1021/ar700238s
[29]
Anastas, P. and Eghbali, N. (2010) Green Chemistry: Principles and Practice. Chemical Society Reviews, 39, 301-312. https://doi.org/10.1039/B918763B
[30]
Surati, M.A., Jauhari, S. and Desai, K.R. (2012) A Brief Review: Microwave Assisted Organic Reaction. Archives of Applied Science Research, 4, 645-661.
[31]
Leadbeater, N.E. and Torenius, H.M. (2002) A Study of the Ionic Liquid Mediated Microwave Heating of Organic Solvents. The Journal of Organic Chemistry, 67, 3145-3148. https://doi.org/10.1021/jo016297g
[32]
Fu, J.-G. (2012) The Synthetic Process Improvement of Sodium Valproate. Shandong Huagong, 41, 3-4.
[33]
Shaikh, T.M. and Hong, F.-E. (2011) Iron-Catalyzed Oxidative Cleavage of Olefins and Alkynes to Carboxylic Acids with Aqueous tert-Butyl Hydroperoxide. Advanced Synthesis & Catalysis, 353, 1491-1496.
https://doi.org/10.1002/adsc.201000899
[34]
Couperus, P.A., Clague, A.D.H. and van Dongen, J.P.C.M. (1978) Carbon-13 Chemical Shifts of Some Model Carboxilic Acids and Esters. Organic Magnetic Resonance, 12, 590-597. https://doi.org/10.1002/mrc.1270111203
[35]
Palmieri, A., Gabrielli, S. and Ballini, R. (2010) Michael Reaction of Nitroalkanes with β-Nitroacrylates under a Solid Promoter: advanced Regio- and Diastereoselective Synthesis of Nitro-Funcionalized α,β-Unsaturade Esters and 1,3-Butadiene-2- Carboxylates. Advanced Synthesis & Catalysis, 352, 1485-1492.
https://doi.org/10.1002/adsc.201000142
[36]
Rogers, L.M.-A., Rouden, J., Lecomte, L. and Lasne, M.C. (2003) Enantioselective Decarboxylation-Reprotonation of an α-Amino Malonate Derivative as a Route to Optically Enriched Cyclic α-Amino Acid. Tetrahedron Letters, 44, 3047-3050.
https://doi.org/10.1016/S0040-4039(03)00557-4
[37]
Nejman, M., Sliwinska, A. and Zwierzak, A. (2005) New Access to Racemic β3-Amino Acids. Tetrahedron, 61, 8536-8541. https://doi.org/10.1016/j.tet.2005.04.077
[38]
Torre, O., Gotor-Fernández, V. and Gotor, V. (2006) Lipase-Catalyzed Resolution of Chiral 1,3-Amino Alcohols: Application in the Asymmetric Synthesis of (S)-Dapoxetine. Tetrahedron: Asymmetry, 17, 860-866.
https://doi.org/10.1016/j.tetasy.2006.02.022
[39]
Tao, Z. and Fanzhi, Z. (2011) Method for Synthesizing Dapoxetine. Patent No. CN 102229538.
[40]
Zhu, Y., Liu, Z., Li, H., Ye. D. and Zhou, W. (2015) A Novel and Practical Asymmetric Synthesis of Dapoxetine Hydrochloride. Beilstein Journal of Organic Chemistry, 11, 2641-2645. https://doi.org/10.3762/bjoc.11.283
[41]
Sasikumar, M. and Nikalje, M.D. (2012) Simple and Efficient of (S)-Dapoxetine. Synthetic Communications, 42, 3061-3067.
https://doi.org/10.1080/00397911.2011.575522
[42]
Venkatesan, K. and Srinivasan, K.V. (2008) A Stereoselective Synthesis of (S)-Dapoxetine Starting from Trans-Cinnamyl Alcohol. Arkivok, xvi, 302-310.
[43]
Huajun, S., Lu, H., Shangjin, Y. and Chuanzhi, L. (2010) Simple and Green Method for Synthesizing 4-(4-pyridinyl)-1-butanol as Key Intermediate of Tirofiban Hydrochloride. Patent No. CN 101898998.
[44]
Siebler, M., Hennerinci, M.G., Schneider, D., von Reutern, G.M. Seitz, R.J., Rother, J., Witte, O.W., Hamann, G., Junghans, U., Villringer, A. and Fiebach, J.B. (2011) Safety of Tirofiban in Acute Ischemic Stroke the SaTIS Trial. Stroke, 42, 2388-2392.
https://doi.org/10.1161/STROKEAHA.110.599662