Conscious agency is considered to be founded upon a quantum state of mind . An original synthesis, called “Lithium Quantum Consciousness” (LQC), proposes that this quantum state utilises lithium-6 (spin-1) qutrit nuclear magnetic resonance (NMR) quantum information processing (QIP) in the connectome (brain-graph). In parallel to the connectome’s processing of physiological controls, perception, cognition and intelligence via quantum electrodynamics (QED), the connectome also functions via its dynamic algebraic topology as a unitary transceiver antenna laced with lithium-6 nuclei which are spin-entangled with each other and with the environmental vortical gluon field via quantum chromodynamics (QCD). This unitary antenna (connectome) bestows the self its unity of consciousness within an intertwined-history multi-agent environment. An equivalence is proposed between Whitehead’s occasions of experience and topological spacetime instantons in the vortical gluon field. Topological spacetime instantons pervade the vortical gluon field in a quantum information network of vortex interactions, herein termed the “instanton-net”, or “Instanet” [sic]. The fermionic isotope lithium-6 has a very low nuclear binding energy and the smallest non-zero nuclear electric quadrupole moment of any stable nucleus making it susceptible to quantum chromodynamic (QCD) interaction with the vortical gluon field and ideal for spin-1 qutrit NMR-QIP. The compact spherical atomic orbital of lithium provides ideal rotational freedom inside tetrahedral water cages in organo6Li+(H2O)4 within which the lithium nucleus rapidly tumbles for NMR motional narrowing and long decoherence times. Nuclear spin-entanglement, among water-caged lithium-6 nuclei in the connectome, is a spin-1 qutrit NMR-QIP resource for conscious agency. By contrast, similar tetrahedral xenon cages in organo6Li+Xe4 excimers are postulated to decohere the connectome’s NMR-QIP due to xenon’s NMR signal being extremely sensitive to its molecular environment. By way of this quantum neurochemistry, lithium is an effective psychiatric medication for enhancing mood and xenon is an effective anaesthetic.
References
[1]
McCoss, A. (2016) Quantum Deep Learning Triuniverse. Journal of Quantum Information Science, 6, 223. https://doi.org/10.4236/jqis.2016.64015
[2]
McCoss, A. (2017) Agency of Life, Entropic Gravity and Phenomena Attributed to “Dark Matter”. Journal of Quantum Information Science, 7, 67. https://doi.org/10.4236/jqis.2017.72007
[3]
Fisher, M.P. (2017) Are We Quantum Computers, or Merely Clever Robots? International Journal of Modern Physics B, 31, 1743001.
[4]
Weingarten, C.P., Doraiswamy, P.M. and Fisher, M.P. (2016) A New Spin on Neural Processing: Quantum Cognition. Frontiers in Human Neuroscience, 10.
[5]
Fisher, M.P. (2015) Quantum Cognition: The Possibility of Processing with Nuclear Spins in the Brain. Annals of Physics, 362, 593-602. https://doi.org/10.1016/j.aop.2015.08.020
[6]
Hameroff, S.R. and Penrose, R. (1996) Conscious Events as Orchestrated Space-Time Selections. Journal of Consciousness Studies, 3, 36-53.
[7]
Hameroff, S. and Penrose, R. (1996) Orchestrated Reduction of Quantum Coherence in Brain Microtubules: A Model for Consciousness. Mathematics and Computers in Simulation, 40, 453-480. https://doi.org/10.1016/0378-4754(96)80476-9
[8]
Hameroff, S. and Penrose, R. (2014) Consciousness in the Universe: A Review of the ‘Orch OR’ Theory. Physics of Life Reviews, 11, 39-78. https://doi.org/10.1016/j.plrev.2013.08.002
[9]
Cipriani, A., Pretty, H., Hawton, K. and Geddes, J.R. (2005) Lithium in the Prevention of Suicidal Behavior and All-Cause Mortality in Patients with Mood Disorders: A Systematic Review of Randomized Trials. American Journal of Psychiatry, 162, 1805-1819. https://doi.org/10.1176/appi.ajp.162.10.1805
[10]
Smith, K.A. and Cipriani, A. (2017) Lithium and Suicide in Mood Disorders: Updated Meta—Review of the Scientific Literature. Bipolar Disorders. John Wiley & Sons Ltd., New York.
[11]
Sechzer, J.A., Lieberman, K.W., Alexander, G.J., Weidman, D. and Stokes, P.E. (1986) Aberrant Parenting and Delayed Offspring Development in Rats Exposed to Lithium. Biological Psychiatry, 21, 1258-1266.
[12]
Chakeres, D.W. and De Vocht, F. (2005) Static Magnetic Field Effects on Human Subjects Related to Magnetic Resonance Imaging Systems. Progress in Biophysics and Molecular Biology, 87, 255-265. https://doi.org/10.1016/j.pbiomolbio.2004.08.012
[13]
Kurzyński, P. and Kaszlikowski, D. (2012) Contextuality of Almost All Qutrit States Can Be Revealed with Nine Observables. Physical Review A, 86, Article ID: 042125. https://doi.org/10.1103/PhysRevA.86.042125
[14]
Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C. and O’Brien, J.L. (2010) Quantum Computers. Nature, 464, 45-53.
[15]
Dogra, S., Arvind and Dorai, K. (2014) Determining the Parity of a Permutation using an Experimental NMR Qutrit. Physics Letters A, 378, 3452-3456.
[16]
Gedik, Z., Silva, I.A., Çakmak, B., Karpat, G., Vidoto, E.L.G., Soares-Pinto, D.O., Fanchini, F.F., et al. (2015) Computational Speed-Up with a Single Qudit. Scientific Reports, 5, Article No. 14671. https://doi.org/10.1038/srep14671
[17]
Smania, M., Elhassan, A.M., Tavakoli, A. and Bourennane, M. (2016) Experimental Quantum Multiparty Communication Protocols. NPJ Quantum Information, 2, Article No. 16010. https://doi.org/10.1038/npjqi.2016.10
[18]
Chandrakumar, N. (1996) Spin-1 NMR. Vol. 34, Springer-Verlag, Berlin and Heidelberg GmbH & Co.
[19]
Dogra, S., Dorai, K. and Arvind (2017) Majorana Representation, Qutrit Hilbert Space and NMR Implementation of Qutrit Gates.
[20]
Li, B., Yu, Z.H. and Fei, S.M. (2013) Geometry of Quantum Computation with Qutrits. Scientific Reports, 3, Article No. 2594. https://doi.org/10.1038/srep02594
[21]
Shauro, V.P., Pekhterev, D.I. and Zobov, V.E. (2007) A Comparative Analysis of Two Methods of Realizing Elementary Logic Operators for a Quantum Computer on Qutrits. Russian Physics Journal, 50, 566-573. https://doi.org/10.1007/s11182-007-0084-6
[22]
Feller, D., Glendening, E.D., Kendall, R.A. and Peterson, K.A. (1994) An Extended Basis Set ab initio Study of Li+ (H2O) n, n= 1-6. The Journal of Chemical Physics, 100, 4981-4997. https://doi.org/10.1063/1.467217
[23]
Wójcik, M.J., Mains, G.J. and Devlin, J.P. (1995) Theoretical Study of [Li (H2O) n]+ and [K (H2O) n]+(n= 1-4) Complexes. International Journal of Quantum Chemistry, 53, 49-56. https://doi.org/10.1002/qua.560530108
[24]
Hashimoto, K. and Kamimoto, T. (1998) Theoretical Study of Microscopic Solvation of Lithium in Water Clusters: Neutral and Cationic Li (H2O) n (n= 1-6 and 8). Journal of the American Chemical Society, 120, 3560-3570. https://doi.org/10.1021/ja972726+
[25]
Zeng, Z., Liu, C.W., Hou, G.L., Feng, G., Xu, H.G., Gao, Y.Q. and Zheng, W.J. (2015) Photoelectron Spectroscopy and ab initio Calculations of Li (H2O) n-and Cs (H2O) n-(n= 1-6) Clusters. The Journal of Physical Chemistry A, 119, 2845-2856. https://doi.org/10.1021/jp512177j
[26]
Lamoureux, G. and Roux, B. (2006) Absolute Hydration Free Energy Scale for Alkali and Halide Ions Established from Simulations with a Polarizable Force Field. The Journal of Physical Chemistry B, 110, 3308-3322. https://doi.org/10.1021/jp056043p
[27]
Gehm, M.E. Properties of 6Li. http://www.physics.ncsu.edu/jet/techdocs/pdf/PropertiesOfLi.pdf
[28]
Whitehead, A.N. (1929) Process and Reality. Macmillan, New York.
[29]
Hanany, A. and Tong, D. (2003) Vortices, Instantons and Branes. Journal of High Energy Physics, 2003, 037. https://doi.org/10.1088/1126-6708/2003/07/037
[30]
Tong, D. (2005) TASI Lectures on Solitons: Instantons, Monopoles, Vortices and Kinks. https://arxiv.org/pdf/hep-th/0509216.pdf
[31]
Gross, D.J., Pisarski, R.D. and Yaffe, L.G. (1981) QCD and Instantons at Finite Temperature. Reviews of Modern Physics, 53, 43. https://doi.org/10.1103/RevModPhys.53.43
[32]
Schäfer, T. and Shuryak, E.V. (1998) Instantons in QCD. Reviews of Modern Physics, 70, 323. https://doi.org/10.1103/RevModPhys.70.323
[33]
Novikov, V.A., Shifman, M.A., Vainshtein, A.I. and Zakharov, V.I. (1999) ABC of Instantons. In: ITEP Lectures on Particle Physics and Field Theory, Volume 1, 201-299.
[34]
Petreczky, P. (2012) Lattice QCD at Non-Zero Temperature. Journal of Physics G: Nuclear and Particle Physics, 39, Article ID: 093002. https://doi.org/10.1088/0954-3899/39/9/093002
[35]
Alexandrou, C., de Forcrand, P. and D’Elia, M. (2000) The Role of Center Vortices in QCD. Nuclear Physics A, 663, 1031c-1034c.
[36]
Trewartha, D., Kamleh, W. and Leinweber, D. (2015) Evidence That Centre Vortices Underpin Dynamical Chiral Symmetry Breaking in SU (3) Gauge Theory. Physics Letters B, 747, 373-377.
[37]
‘t Hooft, G. (1976) Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle. Physical Review D, 14, 3432-3450. https://doi.org/10.1103/PhysRevD.14.3432
[38]
Belavin, A.A., Polyakov, A.M., Schwartz, A.S. and Tyupkin, Y.S. (1975) Pseudoparticle Solutions of the Yang-Mills Equations. Physics Letters B, 59, 85-87.
[39]
Reimann, M.W., Nolte, M., Scolamiero, M., Turner, K., Perin, R., Chindemi, G., Markram, H., et al. (2017) Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function. Frontiers in Computational Neuroscience, 11, 48. https://doi.org/10.3389/fncom.2017.00048
[40]
Tozzi, A., Peters, J.F., Fingelkurts, A.A., Fingelkurts, A.A. and Marijuán, P.C. (2017) Topodynamics of Metastable Brains. Physics of Life Reviews, 21, 1-20.
[41]
Gastner, M.T. and ódor, G. (2016) The Topology of Large Open Connectome Networks for the Human Brain. Scientific Reports, 6, Article No. 27249. https://doi.org/10.1038/srep27249
[42]
Lichtinger, J., Gernhäuser, R., Bauer, A., Bendel, M., Canella, L., Graw, M., Schöpfer, J., et al. (2013) Position Sensitive Measurement of Lithium Traces in Brain Tissue with Neutrons. Medical Physics, 40, Article ID: 023501. https://doi.org/10.1118/1.4774053
[43]
Beaulieu, C. (2002) The Basis of Anisotropic Water Diffusion in the Nervous System—A Technical Review. NMR in Biomedicine, 15, 435-455. https://doi.org/10.1002/nbm.782
[44]
Atasoy, S., Donnelly, I. and Pearson, J. (2016) Human Brain Networks Function in Connectome-Specific Harmonic Waves. Nature Communications, 7, Article No. 10340. https://doi.org/10.1038/ncomms10340
[45]
Leggett, A.J. (2005) The Quantum Measurement Problem. Science, 307, 871-872.
[46]
Martyna, G., Cheng, C. and Klein, M.L. (1991) Electronic States and Dynamical Behavior of LiXe n and CsXe n Clusters. The Journal of Chemical Physics, 95, 1318-1336. https://doi.org/10.1063/1.461115
[47]
Al-Ahmari, M., Saidi, S., Dhiflaoui, J., Hassen, F. and Berriche, H. (2015) Structure and Stability of the Li+ Xen and LiXen Clusters. Journal of Cluster Science, 26, 913-924. https://doi.org/10.1007/s10876-014-0780-7
[48]
Lachmann, B., Armbruster, S., Schairer, W., Landstra, M., Trouwborst, A., Van Daal, G.J. and Erdmann, W. (1990) Safety and Efficacy of Xenon in Routine Use as an Inhalational Anaesthetic. The Lancet, 335, 1413-1415.
[49]
Morgado, P., Bonifaácio, R., Martins, L.F. and Filipe, E.J. (2013) Probing the Structure of Liquids with 129Xe NMR Spectroscopy: n-Alkanes, Cycloalkanes, and Branched Alkanes. The Journal of Physical Chemistry B, 117, 9014-9024. https://doi.org/10.1021/jp4060507
[50]
Vaara, J., Ruud, K. and Vahtras, O. (1999) Second- and Third-Order Spin-Orbit Contributions to Nuclear Shielding Tensors. The Journal of Chemical Physics, 111, 2900-2909. https://doi.org/10.1063/1.479572
[51]
Vícha, J., Foroutan-Nejad, C., Pawlak, T., Munzarová, M.L., Straka, M. and Marek, R. (2015) Understanding the Electronic Factors Responsible for Ligand Spin-Orbit NMR Shielding in Transition-Metal Complexes. Journal of Chemical Theory and Computation, 11, 1509-1517. https://doi.org/10.1021/ct501089z