全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Finite Element Analysis Study of Prototype of a Novel Intramedullary Injectable Bioresorbable Polymer Fixator versus a Volar Plate for Surgical Treatment of Distal Radius Fractures

DOI: 10.4236/wjet.2017.54054, PP. 648-667

Keywords: Distal Radius Fracture, Volar Locking Plate, Intramedullary Fixation, Finite Element Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Complications and shortcomings of volar plating, which is very widely used for surgical treatment of distal radius fractures, are well known. Thus, there is scope for alternative innovative surgical methods. In the present work, we used the finite element analysis method to compare the biomechanical performance of a model of a construct comprising a simulated distal radius fracture considered fixated using a notional intramedullary injectable bioresorbable polymer-bioresorbable balloon osteosynthesis system (“fixator”) versus using a commercially-available volar locking plate (VP). The biomechanical parameters determined were longitudinal stiffness and factor of safety under each of the applied loads.For the fixator model, 1) each of the biomechanical parameters was markedly influenced by fracture gap fill ratio (FGFR) (defined as the proportion of the volume of the fracture gap that is considered occupied by the expanded polymer-filled balloon)but not by modulus of elasticity assigned to the polymer; 2) with FGFR = 100%, stiffness was comparable to that of the Ti-6Al-4V alloy VP construct model; and 3) stiffness was within the range of literature values for stiffness of constructs comprising simulated fractures in fresh cadaveric distal radii fixated using metal volar locking plate. These results suggest that the fixator may be an alternative modality to metal volar plating and, as such, deserves further evaluation.

References

[1]  Nellans, K.W., Kowalski, E. and Chung, K.C. (2012) The Epidemiology of Distal Radius Fractures. Hand Clinics, 28, 113-125.
https://doi.org/10.1016/j.hcl.2012.02.001
[2]  Zhang, L.-H., Wang, Y.-N., Zhi, M., Zhang, L.-C., Li, H.-D., Huan, Y., Kiu, X.-X. and Tang, P.-F. (2015) Volar Locking plate versus External Fixation for the Treatment of Unstable Distal Radial Fractures: A Meta-Analysis of Randomized Controlled Trials. Journal of Surgical Research, 193, 324-333.
https://doi.org/10.1016/j.jss.2014.06.018
[3]  Brogren, E., Petranek, M. and Atroshi, I. (2015) Cast-Treated Distal Radius Fractures: A Prospective Cohort Study of Radiological Outcomes and Their Association with Impaired Calcaneal Bone Mineral Density. Archives of Orthopaedic and Trauma Surgery, 135, 927-933.
https://doi.org/10.1007/s00402-015-2220-z
[4]  Shah, R., Shah, S., Shah, A., Gajjar, S., Chaudhari, V. and Siddhapuria, P. (2017) Comparison Study for Internal and External Modes of Fixation for Fractures of Distal End Radius. International Journal of Research in Orthopaedics, 3, 744-750.
https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20172032
[5]  Gausepohl, T., Penning, D., Heck, S., Gick, S., Vegt, P.A. and Block, J.E. (2017) Effective Management of Bone Fractures with the Illuminoss? Photodynamic Bone Stabilization System: Initial Clinical Experience from the European Union Registry. Orthopedic Reviews (Pavia), 9, 6988.
https://doi.org/10.4081/or.2017.6988
[6]  Hull, P., Baraza, N., Whalley, H., Brewster, M. and Costa, M. (2010) Dorsally Displaced Fractures of the Distal Radius—A Study of Preferred Treatment Options among UK Trauma and Orthopedic Surgeons. Hand Surgery, 15, 185-191.
https://doi.org/10.1142/S0218810410004801
[7]  Lichtman, D.M., Bindra, R.R., Boyer, M.I., Putnam, M.D., Ring, D., Slutsky, D.J., et al. (2011) American Academy of Orthopaedic Surgeons Clinical Practice Guideline on: The Treatment of Distal Radius Fractures. Journal of Bone & Joint Surgery - American Volume, 93, 775-778.
https://doi.org/10.2106/JBJS.938ebo
[8]  Horst, T.A. and Jupiter, J.B. (2016) Stabilisation of Distal Radius Fractures: Lessons Learned and Future Directions. Injury, 47, 313-319.
https://doi.org/10.1016/j.injury.2015.09.030
[9]  Vosbikian, M., Ketonis, C., Huang, R. and Ilyas, A.M. (2016) Optimal Positioning for Volar Plate Fixation of a Distal Radius Fracture. Orthopedic Clinics of North America, 47, 235-244.
https://doi.org/10.1016/j.ocl.2015.08.020
[10]  Satake, H., Hanaka, N., Honma, R., Watanabe, T., Inoue, S., Kanauchi, Y., Kato, Y., Nakajima, T., Sato, D., Maruyama, M., Naganuma, Y., Sasaki, J., Toyono, S., Harada, M., Ishigaki, D., Takahara, M. and Takagi, M. (2016) Complications of Distal Radius Fractures Treated by Volar Locking Plate Fixation. Orthopedics, 39, e893-e896.
https://doi.org/10.3928/01477447-20160517-05
[11]  Zysk, A., Lewis, G., Taxier, D. and Rose, J. (2017) Biomechanical Comparison of Prototype of a Novel Intramedullary Injectable Bioresorbable Polymer-Bioresorbable Balloon Osteosynthesis and a Volar Locking Plate for Treatment of Distal Radius Fractures. World Journal of Engineering and Technology, 5, 309-323.
[12]  Smith & Nephew (2016) Memphis, TN, USA; Private Communication.
[13]  Rausch, S., Klos, K., Gras, F., Skuley, H., Popp, A., Hofman, G., et al. (2013) Utility of the Cortical Thickness of the Distal Radius as a Predictor of Distal Radius Bone Density. Archives of Trauma Research, 2, 11-15.
https://doi.org/10.5812/atr.10687
[14]  Rho, R.Y. (2000) Ultrasonic Methods for Evaluating Mechanical Properties of Bone. In: An, Y.H. and Draughn, R.A., Eds., Mechanical Testing of Bone and the Bone-Implant Interface, CRC Press, Boca Raton, 357-370.
[15]  Smith, W.F. and Hashemi, J. (2006) Foundations of Materials Science and Engineering. 4th Edition, McGraw Hill Educational, New York.
[16]  Rasheva, Z., Zhang, G. and Burkhart, T. (2010) A Correlation between the Tribological and Mechanical Properties of Carbon Fibers Reinforced PEEK Materials with Different Fiber Orientations. Tribology International, 43, 1430-1437.
[17]  Hart, A., Collins, M., Chhatwal, D., Steffen, T., Harvey, E. and Martineau, P. (2015) Can the Use of Variable-Angle Volar Locking Plates Compensate for Suboptimal Plate Positioning in Unstable Distal Radius Fractures? A Biomechanical Study. Journal of Orthopaedic Trauma, 29, 1-6.
https://doi.org/10.1097/BOT.0000000000000146
[18]  Marshall, T., Momaya, A., Eberhardt, A., Chaudhari, N. and Hunt III, T.R. (2015) Biomechanical Comparison of Volar Fixed-Angle Locking Plates for AO C3 Distal Radius Fractures: Titanium Plates versus Stainless Steel with Compression. Journal of Hand Surgery, 40, 2032-2038.
[19]  Vittore, D., Vicenti, G., Caizzi, G., Abate, A. and Moretti, B. (2014) Balloon-Assisted Reduction, Pin Fixation, and Tricalcium Phosphate Augmentation for Calcanear Fracture. Injury, 45, 572-579.
[20]  Plate, J.F., Gaffney, D.L., Emory, C.L., Mannava, S., Smith, B.P., Koman, A., Wiesler, E.R. and Li, Z. (2015) Randomized Comparison of Volar Locking Plates and Intramedullary Nails for Unstable Distal Radius Fractures. Journal of Hand Surgery, 40, 1095-1101.
[21]  Obert, L., Loisel, F., Gasse, N. and Lepage, D. (2015) Distal Radius Anatomy Applied to the Treatment of Wrist Fractures by Plate: A Review of Recent Literature. SICOT-J, 1, 14.
https://doi.org/10.1051/sicotj/2015012
[22]  Gangopadhyay, S., Ravi, K. and Packer, G. (2006) Dorsal Plating of Unstable Distal Radius Fractures using a Bio-Absorbable Plating System and Bone Substitute. Journal of Hand Surgery, 31B, 93-100.
[23]  Rikli, D.A., Curtis, R., Schilling, C. and Goldhahn, J. (2002) The Potential of Bioresorbable Plates and Screws for Distal Radius Fracture Fixation. Injury, 33, S-B77-S-B83.
[24]  RESOMER Biodegradable Polymer for Medical Device Applications. Brochure; Sigma Aldrich, St. Louis.
http://www.sigmaaldrich.com/materials-science/polymer-science/resomer.html
[25]  Osada, D., Viegas, S.F., Shah, M.A., Morris, R.P. and Patterson, R.M. (2003) Comparison of Different Distal Radius Dorsal and Volar Fracture Fixation Plates: A Biomechanical Study. Journal of Hand Surgery, 28A, 94-104.
https://doi.org/10.1053/jhsu.2003.50016
[26]  Liporace, F.A., Gupta, S., Jeong, G.K., Stracher, M., Kummer, F., Egol, K.A. and Koval, K.J. (2005) A Biomechanical Comparison of a Dorsal 3.5-mm T-Plate and a Volar Fixed-Angle Plate in a Model of Dorsally Unstable Distal Radius Fractures. Journal of Orthopaedic Trauma, 19, 187-191.
https://doi.org/10.1097/00005131-200503000-00006
[27]  Blythe, M., Stoffel, K., Jarrett, P. and Kuster, M. (2006) Volar versus Dorsal Locking Plates with and without Radial Styloid Locking Plates for Fixation of Dorsally Comminuted Distal Radius Fractures: A Biomechanical Study in Cadavers. Journal of Hand Surgery, 31A, 1587-1593.
[28]  Strauss, E.J., Banerjee, D., Kummer, F.J. and Tejwani, N.C. (2008) Evaluation of a Novel, Nonspanning External Fixator for Treatment of Unstable Extra-Articular Fractures of the Distal Radius: Biomechanical Comparison with a Volar Locking Plate. Journal of Trauma, 64, 975-981.
https://doi.org/10.1097/TA.0b013e3180eea9f0
[29]  Mehling, I., Müller, L.P., Delinsky, K., Mehler, D., Ing, D., Burkhart, K.J., et al. (2010) Number and Locations of Screw Fixation for Volar Fixed-Angle Plating of Distal Radius Fractures: Biomechanical Study. Journal of Hand Surgery, 35A, 885-891.
[30]  Mehling, I., Klitscher, D., Mehling, A.P., Nowak, T.E., Sternstein, W., Ing, D., et al. (2012) Volar Fixed-Angle Plating of Distal Radius Fractures: Screws versus Pegs—A Biomechanical Study in a Cadaveric Model. Journal of Orthopaedics and Traumatology, 26, 395-401.
https://doi.org/10.1097/BOT.0b013e318225ea46
[31]  Baumbach, S.F., Synek, A., Traxler, H., Mutschler, W., Pahr, D. and Chevalier, Y. (2015) The Influence of Distal Screw Length on the Primary Stability of Volar Plate Osteosynthesis—A Biomechanical Study. Journal of Orthopaedic Surgery and Research, 10, 139.
[32]  Koh, S., Morris, R.P., Patterson, R.M., Kearney, J.P., Buford, W.L. and Viegas, S.F. (2006) Volar Fixation for Dorsally Angulated Extra-Articular Fractures of the Distal Radius: A Biomechanical Study. Journal of Hand Surgery, 31A, 771-779.
[33]  Lin, Y.-H., Lin, C.-L., Kuo, H.-N., Sun, M.-T. and Chen, A.C.-Y. (2012) Biomechanical Analysis of Volar and Dorsal Double Locking Plates for Fixation in Comminuted Extra-Articular Distal Radius Fractures: A 3D Finite Element Study. Journal of Medical and Biological Engineering, 32, 349-356.
https://doi.org/10.5405/jmbe.1003
[34]  Pistoia, W., Rietbergen, B.V., Lochmüller, E.M., Lill, C.A., Eckstein, F. and Rüegsegger, P. (2002) Estimation of Distal Radius Failure Load with Micro-Finite Element Analysis Models Based on Three-Dimensional Peripheral Quantitative Computed Tomography Images. Bone, 30, 842-848.
[35]  Troy, K.L. and Grabiner, M.D. (2007) Off-Axis Loads Cause Failure of the Distal Radius at Lower Magnitudes than Axial Loads: A Finite Element Analysis. Journal of Biomechanics, 40, 1670-1675.
[36]  Varga, P., Baumbach, S., Pahr, D. and Zysset, P.K. (2009) Validation of an Anatomy Specific Finite Element Model of Colles’ Fracture. Journal of Biomechanics, 42, 1726-1731.
[37]  Hosseini, H.S., Dunki, A., Fabech, J., Stauber, M., Vilayphiou, N., Pahr, D., Pretterklieber, M., Wandel, J., van Rietbergen, B. and Zysset, P.K. (2017) Fast Estimation of Colles’ Fracture Load of the Distal Section of the Radius by Homogenized Finite Element Analysis Based on HR-pQCT. Bone, 97, 65-75.
[38]  Varga, P., Pahr, D.H., Baumbach, S. and Zysset, P.K. (2010) HR-pQCT Based FE Analysis of the Most Distal Radius Section Provides an Improved Prediction of Colles’ Fracture Load in Vitro. Bone, 47, 982-928.
[39]  Lin, C.-L., Lin, Y.-H. and Chen, A.C.-Y. (2006) Buttressing Angle of the Double-Plating Fixation of a Distal Radius Fracture: A Finite Element Study. Medical & Biological Engineering & Computing, 44, 665-673.
https://doi.org/10.1007/s11517-006-0082-9
[40]  Cheng, H.-Y.K., Lin, C.-L., Lin, Y.-H. and Chen, A.C.-Y. (2007) Biomechanical Evaluation of the Modified Double-Plating Fixation for the Distal Radius Fracture. Clinical Biomechanics, 22, 510-517.
[41]  Chen, A.C.-Y., Lin, Y.-H., Kuo, H.-N., Yu, T.-C., Sun, M.-T. and Lin, C.-L. (2013) Design Optimisation and Experimental Evaluation of Dorsal Double Plating Fixation for Distal Radius Fracture, Injury, 44, 527-534.
[42]  Brogren, E., Petranek, M. and Atroshi, I. (2007) Incidence and Characteristics of Distal Radius Fractures in a Southern Swedish Region. BMC Musculoskeletal Disorders, 8, 48.
https://doi.org/10.1186/1471-2474-8-48
[43]  Vu-Bac, N., Areias, P.M.A. and Rabczuk, T. (2016) A Multiscale Multisurface Constitutive Model for the Thermoplastic Behavior of Polyethylene. Polymer, 105, 327-338.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133