Many agricultural applications, including improved crop production, precision agriculture, and phenotyping, rely on detailed field and crop information to detect and react to spatial variabilities. Mobile farm vehicles, such as tractors and sprayers, have the potential to operate as mobile sensing platforms, enabling the collection of large amounts of data while working. Open-source hardware and software components were integrated to develop a mobile plant-canopy sensing and monitoring system. The microcontroller-based system, which incorporated a Bluetooth radio, GPS receiver, infrared temperature and ultrasonic distance sensors, micro SD card storage, and voltage regulation components, was developed at a cost of US$292. The system was installed on an agricultural vehicle and tested in a soybean field. The monitoring system demonstrates an application of open-source hardware to agricultural research and provides a framework for similar or additional sensing applications.
References
[1]
Jackson, R.D. (1982) Canopy Temperature and Crop Water Stress. Advances in Irrigation, 1, 43-85. https://doi.org/10.1016/B978-0-12-024301-3.50009-5
[2]
Clawson, K.L., Jackson, R.D. and Pinter, P.J. (1989) Evaluating Plant Water Stress with Canopy Temperature Differences. Agronomy Journal, 81, 858-863.
https://doi.org/10.2134/agronj1989.00021962008100060004x
[3]
Fisher, D.K. and Kebede, H. (2010) A Low-Cost Microcontroller-Based System to Monitor Crop Temperature and Water Status. Computers and Electronics in Agriculture, 74, 168-173. https://doi.org/10.1016/j.compag.2010.07.006
[4]
Bockhold, D.L., Thompson, A.L., Sudduth, K.A. and Henggeler, J.C. (2011) Irrigation Scheduling Based on Crop Canopy Temperature for Humid Environments. Transactions of the ASABE, 54, 2021-2028. https://doi.org/10.13031/2013.40654
[5]
Moles, A.T., Warton, D.I., Warman, L., Swenson, N.G., Laffan, S.W., Zanne, A.E., Pitman, A., Hemmings, F.A. and Leishman, M.R. (2009) Global Patterns in Plant Height. Journal of Ecology, 97, 923-932.
https://doi.org/10.1111/j.1365-2745.2009.01526.x
[6]
Farooque, A.A., Chang, Y.K., Zaman, Q.U., Groulx, D., Schumann, A.W. and Esau, T.J. (2013) Performance Evaluation of Multiple Ground Based Sensors Mounted on a Commercial Wild Blueberry Harvester to Sense Plant Height, Fruit Yield and Topographic Features in Real-Time. Computers and Electronics in Agriculture, 91, 135-144. https://doi.org/10.1016/j.compag.2012.12.006
[7]
Zhang, L. and Grift, T.E. (2012) A LIDAR-Based Crop Height Measurement System for Miscanthus giganteus. Computers and Electronics in Agriculture, 85, 70-76.
https://doi.org/10.1016/j.compag.2012.04.001
[8]
Tilly, N., Hoffmeister, D., Cao, Q., Huang, S., Lenz-Wiedemann, V., Miao, Y. and Bareth, G. (2014) Multitemporal Crop Surface Models: Accurate Plant Height Measurement and Biomass Estimation with Terrestrial Laser Scanning in Paddy Rice. Journal of Applied Remote Sensing, 8, Article ID: 083671.
https://doi.org/10.1117/1.JRS.8.083671
[9]
Freeman, K.W., Girma, K., Arnall, D.B., Mullen, R.W., Martin, K.L., Teal, R.K. and Raun, W.R. (2007) By-Plant Prediction of Corn Forage Biomass and Nitrogen Uptake at Various Growth Stages Using Remote Sensing and Plant Height. Agronomy Journal, 99, 530-536. https://doi.org/10.2134/agronj2006.0135
[10]
Steinberger, G., Rothmund, M. and Auernhammer, H. (2009) Mobile Farm Equipment as a Data Source in an Agricultural Service Architecture. Computers and Electronics in Agriculture, 65, 238-246.
https://doi.org/10.1016/j.compag.2008.10.005
[11]
Gomide, R.L., Inamasu, R.Y., Queiroz, D.M., Mantovani, E.C. and Santos, W.F. (2001) An Automatic Data Acquisition and Control Mobile Laboratory Network for Crop Production Systems Data Management and Spatial Variability Studies in the Brazilian Center-West Region. ASAE Paper No. 01-1046.
[12]
Mazzetto, F., Calcante, A., Mena, A. and Vercesi, A. (2010) Integration of Optical and Analogue Sensors for Monitoring Canopy Health and Vigour in Precision Viticulture. Precision Agriculture, 11, 636-649.
https://doi.org/10.1007/s11119-010-9186-1
[13]
Dworak, V., Selbeck, J. and Ehlert, D. (2011) Ranging Sensors for Vehicle-Based Measurement of Crop Stand and Orchard Parameters: A Review. Transactions of the ASABE, 54, 1497-1510. https://doi.org/10.13031/2013.39013
[14]
Peteinatos, G.G., Weis, M., andújar, D., Rueda Ayala, V. and Gerhards, R. (2014) Potential Use of Ground-Based Sensor Technologies for Weed Detection. Pest Management Science, 70, 190-199. https://doi.org/10.1002/ps.3677
[15]
Barker III, J., Zhang, N., Sharon, J., Steeves, R., Wang, X., Wei, Y. and Poland, J. (2016) Development of a Field-Based High-Throughput Mobile Phenotyping Platform. Computers and Electronics in Agriculture, 122, 74-85.
[16]
Pearce, J.M. (2012) The Case for Open Source Appropriate Technology. Environment, Development and Sustainability, 14, 425-431.
https://doi.org/10.1007/s10668-012-9337-9
[17]
Fisher, D.K. and Gould, P.J. (2012) Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research. Modern Instrumentation, 1, 8-20.
https://doi.org/10.4236/mi.2012.12002
[18]
Arduino (2017) An Open-Source Electronics Prototyping Platform.
https://www.arduino.cc
[19]
Fisher, D.K. and Sui, R. (2013) An Inexpensive Open-Source Ultrasonic Sensing System for Monitoring Liquid Levels. Agricultural Engineering International: CIGR Journal, 15, 328-334.
[20]
Bitella, G., Rossi, R., Bochicchio, R., Perniola, M. and Amato, M. (2014) A Novel Low-Cost Open-Hardware Platform for Monitoring Soil Water Content and Multiple Soil-Air-Vegetation Parameters. Sensors, 14, 19639-19659.
https://doi.org/10.3390/s141019639
[21]
Di Prima, S. (2015) Automated Single Ring Infiltrometer with a Low-Cost Microcontroller Circuit. Computers and Electronics in Agriculture, 118, 390-395.
[22]
Groener, B., Knopp, N., Korgan, K., Perry, R., Romero, J., Smith, K., Stainback, A., Strzelczyk, A. and Henriques, J. (2015) Preliminary Design of a Low-Cost Greenhouse with Open Source Control Systems. Procedia Engineering, 107, 470-479.
[23]
Mesas-Carrascosa, F.J., Verdú Santano, D., Meroño, J.E., Sánchez de la Orden, M. and García-Ferrer, A. (2015) Open Source Hardware to Monitor Environmental Parameters in Precision Agriculture. Biosystems Engineering, 137, 73-83.