We study a random planar honeycomb lattice model, namely the random
double hexagonal chains. This is a lattice system with nonperiodic boundary
condition. The Wiener number is an important molecular descriptor based on
the distances, which was introduced by the chemist Harold Wiener in 1947.
By applying probabilistic method and combinatorial techniques we obtained
an explicit analytical expression for the expected value of Wiener number of a
random double hexagonal chain, and the limiting behaviors on the annealed
entropy of Wiener number when the random double hexagonal chain becomes
infinite in length are analyzed.
References
[1]
Gutman, I. and Furtula, B., Eds. (2012) Distance in Molecular Graphs-Theory (Distance in Molecular Graphs-Applications). University of Kragujevac, Kragujevac.
[2]
Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. Journal of the American Chemical Society, 69, 17-20. https://doi.org/10.1021/ja01193a005
[3]
Dobrynin, A., Entringer, R. and Gutman, I. (2001) Wiener Index of Trees: Theory and Applications. Acta Applicandae Mathematicae, 66, 211-249.
https://doi.org/10.1023/A:1010767517079
[4]
Gutman, I., Kennedy, J.W. and Quintas, L.V. (1990) Wiener Numbers of Random Benzenoid Chains. Chemical Physics Letters, 173, 403-408.
https://doi.org/10.1016/0009-2614(90)85292-K
[5]
Gutman, I. and Polansky, O.E. (1986) Mathematical Concepts in Organic Chemistry. Springer, Berlin. https://doi.org/10.1007/978-3-642-70982-1
[6]
Gutman, I. and Cyvin, S.J., Eds. (1989) Introduction to the Theory of Benzenoid Hydrocarbons. Springer, Berlin. https://doi.org/10.1007/978-3-642-87143-6
[7]
Gutman, I. and Cyvin, S.J., Eds. (1990) Advances in the Theory of Benzenoid Hydrocarbons. Topics in Current Chemistry, Vol. 153, Springer, Berlin.
https://doi.org/10.1007/3-540-51505-4
[8]
Gutman, I., Ed. (1992) Advances in the Theory of Benzenoid Hydrocarbons I. Topics in Current Chemistry, Vol. 162, Springer, Berlin.
[9]
Ren, H.Z., Zhang, F.J. and Qian, J.G. (2012) Dimer Coverings on Random Multiple Chains of Planar Honeycomb Lattices. Journal of Statistical Mechanics: Theory and Experiment, 2012, P08002. https://doi.org/10.1088/1742-5468/2012/08/P08002
[10]
Dresselhaus, M.S., Dresselhaus, G. and Avouris, P. (2001) Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, Berlin.
https://doi.org/10.1007/3-540-39947-X
[11]
Gutman I., Randic, M., Balaban, A., Furtula, B. and Vuckovic, V. (2005) π-Electron Contents of Rings in the Double-Hexagonal-Chain Homologous Series (Pyrene, Anthanthrene and Other Acenoacenes). Polycyclic Aromatic Compounds, 25, 215-226. https://doi.org/10.1080/10406630591007080
[12]
Ren, H.Z. and Zhang, F.J. (2007) Double Hexagonal Chains with Maximal Energy. International Journal of Quantum Chemistry, 107, 1437-1445.
https://doi.org/10.1002/qua.21256
[13]
Ren, H.Z. and Zhang, F.J. (2007) Double Hexagonal Chains with Minimal Total π-Electron Energy. Journal of Mathematical Chemistry, 42, 1041-1056.
https://doi.org/10.1007/s10910-006-9159-9
[14]
Ren, H.Z. and Zhang, F.J. (2007) Extremal Double Hexagonal Chains with Respectfully Yours, to k-Matchings and k-Independent Sets. Discrete Applied Mathematics, 155, 2269-2281. https://doi.org/10.1016/j.dam.2007.06.003
[15]
Deng, H. (2008) The Anti-Forcing Number of Double Hexagonal Chains. MATCH Communications in Mathematical and in Computer Chemistry, 60, 183-192.
[16]
Klein, D.J., ?ivkovi?, T.P. and Trinajsti?, N. (1987) Resonance in Random π-Network Polymers. Journal of Mathematical Chemistry, 1, 309-334.
https://doi.org/10.1007/BF01179796