全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Annealed Entropy of Wiener Number on Random Double Hexagonal Chains

DOI: 10.4236/am.2017.810108, PP. 1473-1480

Keywords: Random Benzenoid Chain, Wiener Number, Entropy

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study a random planar honeycomb lattice model, namely the random double hexagonal chains. This is a lattice system with nonperiodic boundary condition. The Wiener number is an important molecular descriptor based on the distances, which was introduced by the chemist Harold Wiener in 1947. By applying probabilistic method and combinatorial techniques we obtained an explicit analytical expression for the expected value of Wiener number of a random double hexagonal chain, and the limiting behaviors on the annealed entropy of Wiener number when the random double hexagonal chain becomes infinite in length are analyzed.

References

[1]  Gutman, I. and Furtula, B., Eds. (2012) Distance in Molecular Graphs-Theory (Distance in Molecular Graphs-Applications). University of Kragujevac, Kragujevac.
[2]  Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. Journal of the American Chemical Society, 69, 17-20. https://doi.org/10.1021/ja01193a005
[3]  Dobrynin, A., Entringer, R. and Gutman, I. (2001) Wiener Index of Trees: Theory and Applications. Acta Applicandae Mathematicae, 66, 211-249.
https://doi.org/10.1023/A:1010767517079
[4]  Gutman, I., Kennedy, J.W. and Quintas, L.V. (1990) Wiener Numbers of Random Benzenoid Chains. Chemical Physics Letters, 173, 403-408. https://doi.org/10.1016/0009-2614(90)85292-K
[5]  Gutman, I. and Polansky, O.E. (1986) Mathematical Concepts in Organic Chemistry. Springer, Berlin. https://doi.org/10.1007/978-3-642-70982-1
[6]  Gutman, I. and Cyvin, S.J., Eds. (1989) Introduction to the Theory of Benzenoid Hydrocarbons. Springer, Berlin. https://doi.org/10.1007/978-3-642-87143-6
[7]  Gutman, I. and Cyvin, S.J., Eds. (1990) Advances in the Theory of Benzenoid Hydrocarbons. Topics in Current Chemistry, Vol. 153, Springer, Berlin. https://doi.org/10.1007/3-540-51505-4
[8]  Gutman, I., Ed. (1992) Advances in the Theory of Benzenoid Hydrocarbons I. Topics in Current Chemistry, Vol. 162, Springer, Berlin.
[9]  Ren, H.Z., Zhang, F.J. and Qian, J.G. (2012) Dimer Coverings on Random Multiple Chains of Planar Honeycomb Lattices. Journal of Statistical Mechanics: Theory and Experiment, 2012, P08002. https://doi.org/10.1088/1742-5468/2012/08/P08002
[10]  Dresselhaus, M.S., Dresselhaus, G. and Avouris, P. (2001) Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Springer, Berlin. https://doi.org/10.1007/3-540-39947-X
[11]  Gutman I., Randic, M., Balaban, A., Furtula, B. and Vuckovic, V. (2005) π-Electron Contents of Rings in the Double-Hexagonal-Chain Homologous Series (Pyrene, Anthanthrene and Other Acenoacenes). Polycyclic Aromatic Compounds, 25, 215-226.
https://doi.org/10.1080/10406630591007080
[12]  Ren, H.Z. and Zhang, F.J. (2007) Double Hexagonal Chains with Maximal Energy. International Journal of Quantum Chemistry, 107, 1437-1445. https://doi.org/10.1002/qua.21256
[13]  Ren, H.Z. and Zhang, F.J. (2007) Double Hexagonal Chains with Minimal Total π-Electron Energy. Journal of Mathematical Chemistry, 42, 1041-1056. https://doi.org/10.1007/s10910-006-9159-9
[14]  Ren, H.Z. and Zhang, F.J. (2007) Extremal Double Hexagonal Chains with Respectfully Yours, to k-Matchings and k-Independent Sets. Discrete Applied Mathematics, 155, 2269-2281. https://doi.org/10.1016/j.dam.2007.06.003
[15]  Deng, H. (2008) The Anti-Forcing Number of Double Hexagonal Chains. MATCH Communications in Mathematical and in Computer Chemistry, 60, 183-192.
[16]  Klein, D.J., ?ivkovi?, T.P. and Trinajsti?, N. (1987) Resonance in Random π-Network Polymers. Journal of Mathematical Chemistry, 1, 309-334. https://doi.org/10.1007/BF01179796

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133