全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of Incidence Angle of Magnetic Field on the Performance of a Polycrystalline Silicon Solar Cell under Multispectral Illumination

DOI: 10.4236/sgre.2017.810021, PP. 325-335

Keywords: Bifacial, Conversion Efficiency, Incidence Angle, Magnetic Field, Polycrystalline Silicon Solar Cell

Full-Text   Cite this paper   Add to My Lib

Abstract:

The aim of this work is to investigate, with a three-dimensional steady-state approach, the effect of the incidence angle of a magnetic field on the performance of a polycrystalline silicon solar cell under multispectral illumination. The magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power, of a grain of the polycrystalline silicon solar cell. The influence of the incidence angle of the magnetic field on the diffusion coefficient, the short-circuit photocurrent density, the open-circuit photovoltage and the electric power-photovoltage is studied. Then, the curves of the electric power-photovoltage is used to find the maximum electric power allowing to calculate, according to the incidence angle of the magnetic field, the fill factor and the conversion efficiency. The study has shown that the increase of the incidence angle of the magnetic field from 0 rad to π/2 rad, can reduce the degradation of the performance of solar cells.

References

[1]  Nema, S., Nema, R.K. and Agnihotri, G. (2010) Matlab/Simulink Based Study of Photo-voltaiccells/Module/Array and Their Experimental Verification. International Journal of Energy and Environment, 1, 487-500.
[2]  Asghar, S.B. and Singh, R.K. (2015) Simulink Based Analysis and Realization of Solar PV System. Energy and Power Engineering, 7, 546-555.
https://doi.org/10.4236/epe.2015.711051
[3]  Skoplaki, E. and Palyvos, J.A. (2009) On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/Power Correlations. Solar En-ergy, 83, 614-624.
https://doi.org/10.1016/j.solener.2008.10.008
[4]  Alsayid, B.A., Alsadi, S.Y., Jallad, J.S. and Dradi, M.H. (2013) Partial Shading of PV System Simulation with Experimental Results. Smart Grid and Renewable Energy, 4, 429-435.
https://doi.org/10.4236/sgre.2013.46049
[5]  Boukebbous, S.E. and Kerdoun, D. (2015) Study, Modeling and Simulation of Photo-voltaic Panels under Uniform and Non-Uniform Illumination Conditions. Revue des Energies Renouvelables, 18, 257-268.
[6]  Kazem, H.A., Khatib, T., Sopian, K., Buttinger, F., Elmenreich, W. and Albusaidi, A.S. (2013) Effect of Dust Deposition on the Performance of Multi-Crystalline Photovoltaic Modules Based on Experimental Measurements. International Journal of Renewable Energy Research, 3, 850-853.
[7]  Betser, Y., Ritter, D., Bahir, G., Cohen, S. and Sperling, J. (1995) Measurement of the Minority Carrier Mobility in the Base of Heterojunction Bipolar Transistor Using Magneto-Transport Method. Applied Physics Letter, 67, 1883-1884.
https://doi.org/10.1063/1.114364
[8]  Vardanyan, R.R., Kerst, U., Wawer, P. and Wagemann, H. (1998) Method for Measure-ment of All Recombination Parameters in the Base Region of Solar Cells. Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna-Austria, 6-10 July 1998, Vol. I, 191-193.
[9]  Madougou, S., Made, F., Boukary, M.S. and Sissoko, G. (2007) I–V Characteristics for Bifacial Silicon Solar Cell Studied under a Magnetic Field. Advanced Materials Research, 18-19, 303-312.
https://doi.org/10.4028/www.scientific.net/AMR.18-19.303
[10]  Zouma, B., Maiga, A.S., Dieng, M., Zougmoré, F. and Sissoko, G. (2009) 3D Approach of Spectral Response for a Bifacial Silicon Solar Cell under a Constant Magnetic Field. Global Journal of Pure and Applied Sciences, 15, 117-124.
https://doi.org/10.4314/gjpas.v15i1.44908
[11]  Zerbo, I., Zoungrana, M., Sourabie, I., Ouedraogo, A., Zouma, B. and Bathiebo, D.J. (2015) External Magnetic Field Effect on Bifacial Silicon Solar Cell’s Electric Power and Conversion Efficiency. Turkish Journal of Physics, 39, 288-294.
https://doi.org/10.3906/fiz-1505-10
[12]  Zerbo, I., Zoungrana, M., Sourabie, I., Ouedraogo, A., Zouma, B. and Bathiebo, D.J. (2016) External Magnetic Field Effect on Bifacial Silicon Solar Cell’s Electrical Parameters. Energy and Power Engineering, 8, 146-151.
https://doi.org/10.4236/epe.2016.83013
[13]  Sané, M. and Barro, F.I. (2015) Effect of Both Magnetic Field and Doping Density on Series and Shunt Resistances under Frequency Modulation. Indian Journal of Pure and Applied Physics, 53, 590-595.
[14]  Zoungrana, M., Zerbo, I., Ouedraogo, F., Zouma, B. and Zougmoré, F. (2012) 3D Modelling of Magnetic Field and Ligth Concentration Effects on a Bifacial Silicon Solar Cell Illuminated by its Rear Side. IOP Conference Series: Materials Science and Engineering, 29, Article ID: 012020.
http://iopscience.iop.org/1757-899X/29/1/012020
https://doi.org/10.1088/1757-899X/29/1/012020
[15]  Zoungrana, M., Zerbo, I., Soro, B., Savadogo, M., Tiedrebeogo, S. and Bathiebo, D.J. (2017) The Effect of Magnetic Field Effect on the Efficiency of a Silicon Solar Cell under an Intense Light Concentration. Advances in Science and Technology Research Journal, 11, 133-138.
https://doi.org/10.12913/22998624/69699
[16]  Combari, D.U., Zerbo, I., Zoungrana, M., Ramde, E.W. and Bathiebo, D.J. (2017) Modelling Study of Magnetic Field Effect on the Performance of a Silicon Photovoltaic Module. Energy and Power Engineering, 9, 419-429.
https://doi.org/10.4236/epe.2017.98028
[17]  Ba, B. and Kane, M. (1995) Open-Circuit Voltage Decay in Polycrystalline Silicon Solar Cells. Solar Energy Materials and Solar Cells, 37, 259-271.
[18]  Ba, B., Kane, M. and Sarr, J. (2003) Modelling Recombination Current in Polysilicon Solar Cell Grain Boundaries. Solar Energy Materials and Solar Cells, 80, 143-154.
[19]  Ouedraogo, A., Barandja V.D.B., Zerbo, I., Zoungrana, M., Ramde, E.W. and Bathiebo, D.J. (2017) A Theoretical Study of Radio Wave Attenuation through a Polycrystalline Silicon Solar Cell. Turkish Journal of Physics, 41, 314-325.
https://doi.org/10.3906/fiz-1703-16
[20]  Dugas, J. (1994) 3D Modelling of a Reverse Cell Made with Improved Multicrystalline Silicon Wafers. Solar Energy Materials and Solar Cells, 32, 71-88.
[21]  Würfel, P. (2005) Physics of Solar Cells: From Principles to New Concepts. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[22]  Misiakos, K., Wang, C.H., Neugroschel, A. and Lindholm, F.A. (1990) Simultaneous Ex-traction of Minority Carrier Parameters in Crystalline Semiconductors by Lateral Photocurrent. Journal of Applied Physics, 67, 321-331.
https://doi.org/10.1063/1.345256
[23]  Mohammad, S.N. (1987) An Alternative Method for the Performance Analysis of Silicon Solar Cells. Journal of Applied Physics, 61, 767-772.
https://doi.org/10.1063/1.338230

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133