全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mineral Fabrication and Golgi Apparatus Activity in Spirostomum ambiguum: A Primordial Paradigm of the Stressed Bone Cell?

DOI: 10.4236/jbise.2017.1010036, PP. 466-483

Keywords: Golgi-Directed Calcification, Mechanosensing Protozoan, Osteocyte Model, Tetracycline Fluorochrome for Bone Mineral, GFP Fluorochrome for Golgi Apparatus

Full-Text   Cite this paper   Add to My Lib

Abstract:

The histological basis for acute osteocyte mechanosensitivity remains uncertain. A novel bone cell model of mechanotransduction and inorganic trafficking may be the powerful, silt-burrowing protozoan Spirostomum ambiguum which when being physically challenged fabricates within vesicles populations of bone-like calcium phosphate microspheres, about 1 μm in diameter. These not only attribute considerable compression-resilience but also resemble the Golgi-directed mineral assemblies we recently reported in osteocytes. Advantageously, calcification in the protozoan (confirmed by ultramicroscopy with EDX elemental microanalysis) enabled Golgi comparison under overt, natural phases of both high (i.e. silt-tunnelling) and low (i.e free-swimming) stress. Established hard-tissue microscopy techniques previously positive in bone cells included quantitative fluorescent tetracycline labelling for bone salt together with the same metazoan Golgi body marker (Green Fluorescent Protein-tagged mannosidase II construct). Organellar modulation was monitored by transfection of live organisms in situ (some post-stained with red nuclear fluorochrome TOPRO-3). Results showed that GFP-tagged Golgi fluorescence increased from swimmers (mean 74.5 ± SD 6.7 AU) to burrowers (mean 104.6 ± SD 2.7; p < 0.0001) synchronous with juxtanuclear tetracycline-labelled mineral fluorescence (swimmers, mean 89.7 ± SD 3.3 AU; burrowers, mean 138.0 ± SD 4.0; p < 0.0001). Intracellular dense microspheres, single or bridged, were harvested as pellets rich in Ca, P (Ca:P 0.98) and Si, their polarised alignment moving from transaxial in swimmers to axial in burrowers. It was concluded that Golgi-directed mineral fabrication in the large, accessible, silt-enclosed ciliate resembles that in the smaller, less-accessible bone cell and may be a conserved early mechanobiological intracellular development predicating force translation into compression-resistant mineral fabrication in loaded segments of the osteocyte syncitium.

References

[1]  Pautard, F.G.E. (1970) Calcification in Unicellular Organisms. In: Schraer, H., Ed., Biological Calcification: Cellular and Molecular Aspects, Appleton-Century-Crofts, New York, 105-201.
https://doi.org/10.1007/978-1-4684-8485-4_4
[2]  Ruffolo Jr., J.J. (1978) Intracellular Calculi of the Ciliate Protozoon Euplotes eurystomus. Transactions American Microscopical Society, 97, 381-386.
https://doi.org/10.2307/3225990
[3]  Pautard, F.G.E. (1958) Bone Salts in Unicellular Organisms. Acta Biochimica Biophysica, 28, 514-520.
https://doi.org/10.1016/0006-3002(58)90513-4
[4]  Pautard, F.G.E. (1962) The Molecular-Biologic Background to the Evolution of Bone. Clinical Orthopaedics, 24, 230-244.
[5]  Garner, P.E., Wilcox, R., Hordon, L.D. and Aaron, J.E. (2013) Quantification of Cell Networks: Computer-Assisted Method for 3D Mapping of Osteocyte Populations in the Ageing Human Femur. IBMS BoneKEy, 10, Article 333.
[6]  Vatsa, A., Breuls, R.G., Semeins, C.M., Salmon, P.L., Smit, T.H. and Klein-Nulend, J. (2008) Osteocyte Morphology in Fibula and Calvaria—Is There a Role for Mechanosensing? Bone, 43, 452-458.
https://doi.org/10.1016/j.bone.2008.01.030
[7]  Fallon, V., Carter, D.H. and Aaron, J.E. (2014) Mineral Fabrication and Golgi Apparatus Activity in the Mouse Calvarium. Journal of Biomedical Science and Engineering, 7, 769-779. https://doi.org/10.4236/jbise.2014.79075
[8]  Fallon, V. (2006) The Fabrication of Mineral Particles by Bone Cells and Unicellular Organisms. Ph.D. Dissertation, University of Leeds, Leeds.
[9]  Garner, P.E., Fallon, V. and Aaron, J.E. (2011) Spirostomum ambiguum: A Protozoan Model for Primordial Musculoskeletal Exchange. Bone, 48, S140.
https://doi.org/10.1016/j.bone.2011.03.290
[10]  Pautard, F.G.E. (1981) Calcium Phosphate Microspheres in Biology. Progress in Crystal Growth Characteristics, 4, 89-98.
https://doi.org/10.1016/0146-3535(81)90049-6
[11]  Aaron, J.E., Oliver, B., Clarke, N. and Carter, D.H. (1999) Calcified Microspheres as Biological Entities and Their Isolation from Bone. Histochemical Journal, 31, 455-470.
https://doi.org/10.1023/A:1003707909842
[12]  Manton, I. and Leedale, G.F. (1963) Observations on the Microanatomy of Crystallolithus hyalinus Gaarder and Markali. Archives Mikrobiologica, 47, 115-136.
https://doi.org/10.1007/BF00422518
[13]  Marsh, M.E. (1994) Polyanion-Mediated Mineralization-Assembly and Reorganisation of Acidic Polysaccharides in the Golgi System of a Coccolithophorid Alga during Mineral Deposition. Protoplasma, 177, 108-122.
https://doi.org/10.1007/BF01378985
[14]  Kashiwa, H.K. (1970) Calcium Phosphate in Osteogenic Cells. A Critique of the Glyoxal bis (2-hydroxyanil) and the Dilute Silver Acetate Methods. Clinical Orthopaedics, 70, 200-211.
[15]  Aaron, J.E. and Pautard, F.G.E. (1973) A Cell Cycle in Bone Mineralization. In: Balls, M. and Billett, F.S., Eds., The Cell Cycle in Development and Differentiation, Cambridge University Press, Cambridge, 325-330.
[16]  Aaron, J.E. (1974) The Development of the Bone Cell and its Role in Mineralization and Resorption. PhD Dissertation, University of Leeds, Leeds.
[17]  Aaron, J.E. (2016) Cellular Ubiquity of Calcified Microspheres: A Matter of Degree, Ancient History and the Golgi Body? Journal of Biomedical Sciences, 5, 1-5.
https://doi.org/10.4172/2254-609X.100037
[18]  Lu, Z., Joseph, D., Bugnard, E., Zaal, K.J.M. and Ralston, E. (2001) Golgi Complex Reorganization during Muscle Differentiation: Visualization in Living Cells and Mechanism. Molecular Biology of the Cell, 12, 795-808.
https://doi.org/10.1091/mbc.12.4.795
[19]  Moremen, K.W. and Touster, O. (1986) Topology of Mannosidase II in Rat Liver Golgi Membranes and Release of the Catalytic Domain by Selective Proteolysis. Journal of Biology and Chemistry, 261, 10945-10951.
[20]  Zaal, K.J.M., Smith, C.L., Polishchuck, R.S., Altan, N., Cole, N.B., Ellenberg, J., Hirschberg, K., Presley, J.F., Roberts, T.H., Siggia, E., Phair, R.D., Lippincott and Schwartz, J. (1999) Golgi Membranes Are Absorbed into and Re-Emerge from the ER during Mitosis. Cell, 99, 589-601.
[21]  Pautard, F.G.E. (1959) Hydroxyapatite as Developmental Feature of Spirostomum ambiguum. Acta Biochimica and Biophysica, 35, 33-46.
[22]  Carter, D.H., Hatton, P.V. and Aaron, J.E. (1997) The Ultrastructure of Slam-Frozen Bone Mineral. Histochemical Journal, 29, 783-793.
https://doi.org/10.1023/A:1026425404169
[23]  Aaron, J.E., Makins, N.B., Francis, R.M. and Peacock, M. (1984) Staining of the Calcification Front in Human Bone using Contrasting Fluorochromes in Vitro. Journal of Histochemstry and Cytochemistry, 32, 1251-1261.
https://doi.org/10.1177/32.12.6209330
[24]  Pautard, F.G.E. (1961) Calcium Phosphate and the Origin of Backbones. New Scientist, 12, 364-366.
[25]  Dorozhukin, S.V. (2015) Calcium Orthophosphates: Applications in Nature, Biology and Medicine.
http://www.amazon.com/Calcium-Orthophosphates-Applications-Biology-Medicine/dp/9814316628
[26]  Pautard, F.G.E. (1978) Phosphorus and Bone. In: Williams, R.J.P. and Da Silva, J.R.R.F., Eds., New Trends in Bio-Inorganic Chemistry, Academic Press, London, New York, San Francisco, 261-354.
[27]  Anning, T., Nimer, N., Merrett, M.J. and Brownlee, C. (1996) Costs and Benefits of Calcification in Coccolithophorids. Journal of Marine Systems, 9, 45-56.
[28]  Jones, A.R. (1966) Uptake of 45-Calcium by Spirostomum ambiguum. Journal of Protozoology, 13, 422-428.
https://doi.org/10.1111/j.1550-7408.1966.tb01933.x
[29]  Jones, A.R. (1967) Calcium and Phosphate Accumulation in Spirostomum ambiguum. Journal of Protozoology, 14, 220-225.
https://doi.org/10.1111/j.1550-7408.1967.tb01987.x
[30]  Carlisle, E.M. (1981) Silicon: A Requirement in Bone Formation Independent of Vitamin D. Calcified Tissue International, 33, 27-34.
https://doi.org/10.1007/BF02409409
[31]  Linton, K.M., Tapping, C.R., Adams, D.G., Carter, D.H., Shore, R.C. and Aaron, J.E. (2013) A Silicon Cell Cycle in a Bacterial Model of Calcium Phosphate Mineralogenesis. Micron, 44, 419-432.
[32]  Linton, K.M., Hordon, L.D., Shore, R.C. and Aaron, J.E. (2014) Bone Mineral “Quality”: Differing Characteristics of Calcified Microsphere Populations at the Osteoporotic and Osteoarthritic Femoral Articulation Front. Journal of Biomedical Science and Engineering, 7, 739-755.
https://doi.org/10.4236/jbise.2014.79073
[33]  Hirschman, P.N. and Nichols, G. (1972) The Isolation and Partial Characterization of a Calcium-Rich Particulate Fraction from Bone Cells. Calcified Tissue Research, 9, 67-79.
https://doi.org/10.1007/BF02061946
[34]  Matthews, J.L., Martin, J.H., Sampson, H.W., Kunin, A.S. and Roan, J.H. (1970) Mitochondrial Granules in the Normal and Rachitic Rat Epiphysis. Calcified Tissue Research, 5, 91-99. https://doi.org/10.1007/BF02017539
[35]  Aaron, J.E. and Pautard, F.G.E. (1972) Ultrastructural Features of Phosphate in Developing Bone Cells. Israel Journal of Medical Science, 8, 625-629.
[36]  Bien, S.M. (1967) High Hydrostatic Pressure Effects on Spirostomum ambiguum. Calcified Tissue Research, 1, 170-172.
https://doi.org/10.1007/BF02008087
[37]  Outka, D.E. and Williams, D.C. (1971) Sequential Coccolith Morphogenesis in Hymenomonas carterae. Journal of Protozoology, 18, 285-297.
https://doi.org/10.1111/j.1550-7408.1971.tb03319.x
[38]  Pienaar, R.N. (1994) Ultrastructure and Calcification of Coccolithophores. In: Winter, A. and Siesser, W.G., Eds., Coccolithophores, Cambridge University Press, Cambridge, 13-38.
[39]  Young, J.R., Davis, S.A., Bown, P.R. and Mann, S. (1999) Coccolith Ultrastructure and Biomineralization. Journal of Structural Biology, 126, 195-215.
https://doi.org/10.1006/jsbi.1999.4132
[40]  Abolins-Krogis, A. (1970) Electron Microscope Studies of the Intracellular Origin and Formation of Calcifying Granules and Calcium Spherites in the Hepatopancreas of the Snail Helix pomatia. L.Z.Zellforsch, 108, 501-515.
https://doi.org/10.1007/BF00339656
[41]  Aaron, J.E. (1973) Osteocyte Types in the Developing Mouse Calvarium. Calcified Tissue Research, 12, 259-279.
https://doi.org/10.1007/BF02013740
[42]  Aaron, J.E. (1978) Histological Aspects of the Relationship between Vitamin D and Bone. In: Lawson, D.E.M., Ed., Vitamin D, Academic Press, London, 201-265.
[43]  Park, H.Z. and Kashiwa, H.K. (1975) Calcium Localized in Juxtanuclear Granules of Epiphyseal Chondrocytes with a Dilute Glyoxal bis(2-hydroxyanil) Solution. Calcified Tissue Research, 19, 189-197.
https://doi.org/10.1007/BF02564003
[44]  Chang, Y.L., Stanford, C.M. and Keller, J.C. (2000) Calcium and Phosphate Supplementation Promotes Bone Cell Mineralization: Implications for Hydroxyapatite (HA)-Enhanced Bone Formation. In: Lawson, D.E.M., Ed., Journal of Biomedical Material Research, 52, 270-278.
https://doi.org/10.1002/1097-4636(200011)52:2<270::AID-JBM5>3.0.CO;2-1
[45]  Aaron, J.E. (2003) Bone Turnover and Microdamage. Advances in Fracture Management, 2, 102-110.
[46]  Pautard, F.G.E. and WILLIAMS, R.J.P. (1982) Biological Minerals. Chemistry in Britain, 18, 14-16.
[47]  Randall, J.T. and Fitton-Jackson, S. (1958) Fine Structure and Function in Stentor polymorphus. Journal of Biophysics, Biochemistry and Cytology, 4, 807-832.
https://doi.org/10.1083/jcb.4.6.807
[48]  Yagiu, R. and Shigenaka, Y. (1963) Electron Microscopy of the Longitudinal Fibrillar Bundle and the Contractile Fibrillar System in Spirostoum ambiguum. Journal of Protozoology, 10, 364-369.
https://doi.org/10.1111/j.1550-7408.1963.tb01689.x
[49]  Lehman, W.J. and Rebhun, L.I. (1971) The Structural Elements Responsible for Contraction in the Ciliate Spirostomum. Protoplasma, 72, 153-178.
https://doi.org/10.1007/BF01279048
[50]  Aaron, J.E. and Pautard, F.G.E. (1973) Dynamic Studies of Bone in Vivo Incident Light Interference Contrast Microscopy. In: Czitober, H. and Eschberger, J., Eds., Calcified Tissues, Facta Publications, Vienna, 197-201.
[51]  Aaron, J.E. (2012) Periosteal Sharpey’s Fibers: A Novel Bone Matrix Regulatory System? Frontiers in Endocrinology, 3, 1-10.
[52]  Vaughan, T.J., Verbruggen, S.W. and McNamara, L.M. (2013) Are All Osteocytes Equal? Multiscale Modelling of Cortical Bone to Characterise the Mechanical Stimulation of Osteocytes. International Journal of Numerical Methods in Biomedical Engineering, 29, 1361-1372.
https://doi.org/10.1002/cnm.2578
[53]  Ingber, D.E. (2003) Tensegrity I. Cell Structure and Hierarchical Systems Biology. Journal of Cell Science, 116, 1157-1173.
https://doi.org/10.1242/jcs.00359

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133