Valproic acid (VPA) is used in the treatment of epilepsy and behavioral disorders.
However, the exposure to VPA during pregnancy increases the risk of
having offspring with autism spectrum disorder (ASD). Reports indicate that
men are more likely to suffer ASD than women who were exposed to VPA
prenatally. Few studies have related the sex differences and behavioral changes
in the ASD rat model. Our aim was to determinate whether male and female
Wistar rats whose mothers were exposed to either VPA (600 mg/kg; animal
model for ASD) or saline (0.9%) i.p. at 12.5 day of gestation, have different effects
on immobility induce by clamping (IC), dorsal immobility (DI), catalepsy,
locomotor activity, stereotypes, and analgesia (tail flick). For this purpose,
we made four groups (n = 8). Group: A) saline male rats, B) saline female rats,
C) VPA male rats and D) VPA female rats. At 35 (prepubertal age), 56 (postpubertal
age) and 180 days, we tested the behaviors previously mentioned.
Finding that VPA has the same effect on IC, catalepsy, and analgesia in male
and female rats, the time of these tests was increased. However, VPA only has
an effect on DI in males but not in female rats. On the contrary, there is
hyperactivity and an increase of stereotypes in female but not in male rats.
Thereby, VPA has an effect on the three immobility responses tested (IC, DI
and catalepsy), locomotor activity and analgesia but in a differential way on
DI, stereotypes and locomotor activity between male and female rats.
References
[1]
Meador, K., Reynolds, M.W., Crean, S., Fahrbach, K. and Probst, C. (2008) Pregnancy Outcomes in Women with Epilepsy: A Systematic Review and Meta-Analysis of Published Pregnancy Registries and Cohorts. Epilepsy Research, 81, 1-13.
https://doi.org/10.1016/j.eplepsyres.2008.04.022
[2]
Adab, N., Kini, U., Vinten, J., Ayres, J., Baker, G., Clayton-Smith, J., Coyle, H., Fryer, A., Gorry, J., Gregg, J., Mawer, G., Nicolaides, P., Pickering, L., Tunnicliffe, L. and Chadwick, D.W. (2004) The Longer Term Outcome of Children Born to Mothers with Epilepsy. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 1575-1583. https://doi.org/10.1136/jnnp.2003.029132
[3]
Williams, G., King, J., Cunningham, M., Stephan, M., Kerr, B. and Hersh, J.H. (2001) Fetal Valproate Syndrome and Autism: Additional Evidence of an Association. Developmental Medicine & Child Neurology, 43, 202-206.
https://doi.org/10.1111/j.1469-8749.2001.tb00188.x
[4]
Wagner, G.C., Reuhl, K.R., Cheh, M., McRae, P. and Halladay, A.K. (2006) A New Neurobehavioral Model of Autism in Mice: Pre and Postnatal Exposure to Sodium Valproate. Journal of Autism and Developmental Disorders, 36, 779-793.
https://doi.org/10.1007/s10803-006-0117-y
[5]
Christensen, J., Gronborg, T.K., Sorensen, M.J., Schendel, D., Parner, E.T., Pedersen, L.H. and Vestergaard, M. (2013) Prenatal Valproate Exposure and Risk of Autism Spectrum Disorders and Childhood Autism. JAMA, 309, 1696-1703.
https://doi.org/10.1001/jama.2013.2270
[6]
American Psychiatric Association. (2013) Diagnostic and Statistical Manual of Mental Disorders. 5th Edition, American Psychiatric Association, Washington DC.
[7]
Dufour-Rainfray, D., Vourc’h, P., Tourlet, S., Guilloteau, D., Chalon, S. and Andres, C.R. (2011) Fetal Exposure to Teratogens: Evidence of Genes Involved in Autism. Neuroscience & Biobehavioral Reviews, 35, 1254-1265.
https://doi.org/10.1016/j.neubiorev.2010.12.013
[8]
Crawley, J.N. (2012) Translational Animal Models of Autism and Neurodevelopmental Disorders. Dialogues in Clinical Neuroscience, 14, 293-305.
[9]
Hertz-Picciotto, I., Croen, L.A., Hansen, R., Jones, C.R., van de Water, J. and Pessah, N. (2006) The CHARGE Study: An Epidemiologic Investigation of Genetic and Environmental Factors Contributing Autism. Environmental Health Perspectives, 114, 1119-1125. https://doi.org/10.1289/ehp.8483
[10]
Bugge, M., Bruun-Petersen, G. and Brondum-Nielsen, K. (2000) Disease Associated Balanced Chromosome Rearrangements: A Resource for Large Scale Genotype-Phenotype Delineation in Man. Journal of Medical Genetics, 37, 858-865.
https://doi.org/10.1136/jmg.37.11.858
[11]
Cook, E.H. and Scherer, S.W. (2008) Copy-Number Variation Associated with Neuropsychiatric Conditions. Nature, 455, 919-923.
https://doi.org/10.1038/nature07458
[12]
El-Fishawy, P. and State, M.W. (2010) The Genetics of Autism: Key Issues, Recent Findings and Clinical Implications. Psychiatric Clinics of North America, 33, 83-105.
[13]
Wiggins, L., Baio, J. and Rice, C. (2006) Examination of the Time between First Evaluation and First Autism Spectrum Diagnosis in a Population-Based Sample. Journal of Developmental & Behavioral Pediatrics, 27, S79-S87.
https://doi.org/10.1097/00004703-200604002-00005
[14]
Giarelli, E., Wiggins, L.D., Rice, C.E., Levy, S.E., Kirby, R.S., Pinto-Martin, J. and Mandell, D. (2010) Sex Differences in the Evaluation and Diagnosis of Autism Spectrum Disorders among Children. Disability and Health Journal, 3, 107-116.
[15]
Wing, L. (1981) Sex Ratios in Early Childhood Autism and Related Conditions. Psychiatry Research, 5, 129-137.
[16]
Volkmar, F.R., Szatmari, P. and Sparrow, S.S. (1993) Sex Differences in Pervasive Developmental Disorders. Journal of Autism and Developmental Disorders, 23, 579-591. https://doi.org/10.1007/BF01046103
[17]
Crider, A., Thakkar, R., Ahmed, A.O. and Pillai, A. (2014) Dysregulation of Estrogen Receptor Beta (ERβ), Aromatase (CYP19A1), and ER Co-Activators in the Middle Frontal Gyrus of Autism Spectrum Disorder Subjects. Molecular Autism, 5, 46. https://doi.org/10.1186/2040-2392-5-46
[18]
Malyshev, A.V., Abbasova, K.R., Averina, O.A., Solovieva, L.N., Gedzun, V.R., Gulyaev, M.V. and Dubynin, V.A. (2015) Fetal Valproate Síndrome as an Experimental Model of Autism. Physiology. Moscow University Biological Science Bulletin, 70, 110-114. https://doi.org/10.3103/S0096392515030074
[19]
Rinaldi, T., Perrodin, C. and Markram, H. (2008) Hyper-Connectivity and Hyper-Plasticity in the Medial Prefrontal Cortex in the Valproic Acid Animal Model of Autism. Frontiers in Neural Circuits, 2, 4.
https://doi.org/10.3389/neuro.04.004.2008
[20]
Schumann, C.M. and Amaral, D.G. (2006) Stereological Analysis of Amygdala Neuron Number in Autism. Journal of Neuroscience, 26, 7674-7679.
https://doi.org/10.1523/JNEUROSCI.1285-06.2006
[21]
Markram, K., Rinaldi, T., Mendola, D.L., Sandi, C. and Markram, H. (2008) Abnormal Fear Conditioning and Amygdala Processing in an Animal Model of Autism. Neuropsychopharmacology, 33, 901-912.
https://doi.org/10.1038/sj.npp.1301453
[22]
Ritvo, E.R., Freeman, B.J., Scheibel, A.B., Duong, T., Robinson, H., Guthrie, D. and Ritvo, A. (1986) Lower Purkinje Cell Counts in the Cerebella of Four Autistic Subjects: Initial Findings of the UCLA-NSAC Autopsy Research Report. The American Journal of Psychiatry, 143, 862-866. https://doi.org/10.1176/ajp.143.7.862
[23]
Ingram, J.L., Peckham, S.M., Tisdale, B. and Rodier, P.M. (2000) Prenatal Exposure of Rats to Valproic Acid Reproduces the Cerebellar Anomalies Associated with Autism. Neurotoxicology and Teratology, 22, 319-324.
[24]
Hollander, E., Anagnotous, E., Chaplin, W., Esposito, K., Haznedar, M.M., Licalzi, E., Wasserman, S., Soorya, L. and Buchsbaum, M. (2005) Striatal Volume on Magnetic Resonance Imaging and Repetitive Behaviors in Autism. Biological Psychiatry, 58, 226-232.
[25]
Zhang, M.M., Yu, K., Xiao, C. and Ruan, D.Y. (2003) Effects of Sodium Valproate on Synaptic Plasticity in the CA1 Region of Rat Hippocampus. Food and Chemical Toxicology, 411, 617-623.
[26]
Schumann, C.M., Hamstra, J., Goodlin-Jones, B.L., Lotspeich, L.J., Kwon, H., Buonocore, M.H., Lammers, C.R., Reiss, A.L. and Amaral, D.G. (2004) The Amygdala Is Enlarged in Children But Not Adolescents with Autism; The Hippocampus Is Enlarged at All Ages. Journal of Neuroscience, 24, 6392-6401.
https://doi.org/10.1523/JNEUROSCI.1297-04.2004
[27]
Raymond, G.V., Bauman, M.L. and Kemper, T.L. (1996) Hippocampus in Autism: A Golgi Analysis. Acta Neuropathologica, 91, 117-119.
https://doi.org/10.1007/s004010050401
[28]
Miyazaki, K., Narita, N. and Narita, M. (2005) Maternal Administration of Thalidomide or Valproic Acid Causes Abnormal Serotonergic Neurons in the Offspring: Implication for Pathogenesis of Autism. International Journal of Developmental Neuroscience, 23, 287-297.
[29]
Narita, N., Kato, M., Tazoe, M., Miyazaki, K., Narita, M. and Okado, N. (2002) Increased Monoamine Concentration in the Brain and Blood of Fetal Thalidomide- and Valproic Acid-Exposed Rat: Putative Animal Models for Autism. Pediatric Research, 52, 576-579.
[30]
Chen, P.S., Peng, G.S., Li, G., Yang, S., Wu, X., Wang, C.C., Wilson, B., Lu, R.B., Gean, P.W., Chuang, D.M. and Hong, J.S. (2006) Valproate Protects Dopaminergic Neurons in Midbrain Neuron/Glia Cultures by Stimulating the Release of Neurotrophic Factors from Astrocytes. Molecular Psychiatry, 11, 1116-1125.
https://doi.org/10.1038/sj.mp.4001893
[31]
Rinaldi, T., Kulangara, K., Antoniello, K. and Markram, H. (2007) Elevated NMDA Receptor Levels and Enhanced Postsynaptic Long-Term Potentiation Induced by Prenatal Exposure to Valproic Acid. Proceedings of the National Academy of Sciences, 104, 13501-13506. https://doi.org/10.1073/pnas.0704391104
[32]
Schneider, T., Ziolkowska, B., Gieryk, A., Tyminska, A. and Przewlocki, R. (2007) Prenatal Exposure to Valproic Acid Disturbs the Enkephalinergic System Functioning, Basal Hedonic Tone, and Emotional Responses in an Animal Model of Autism. Psychopharmacology, 193, 547-555.
https://doi.org/10.1007/s00213-007-0795-y
[33]
Kerr, D.M., Downey, L., Conboy, M., Finn D.P. and Roche, M. (2013) Alterations in the Endocannabinoid System in the Rat Valproic Acid Model of Autism. Behavioural Brain Research, 249, 124-132.
[34]
Schneider, T. and Przewlocki, R. (2005) Behavioral Alterations in Rats Prenatally to Valproic Acid: Animal Model of Autism Neuropsychopharmacology, 30, 80-89.
https://doi.org/10.1038/sj.npp.1300518
[35]
Schneider, T., Labuz, D. and Przewlocki, R. (2001) Nociceptive Changes in Rats after Prenatal Exposure to Valproic Acid. Polish Journal of Pharmacology, 53, 531-534.
[36]
Schneider, T., Turczak, J. and Przewlocki, R. (2006) Environmental Enrichment Reverses Behavioral Alterations in Rats Prenatally Exposed to Valproic Acid: Issues for a Therapy Approach in Autism. Neuropsychopharmacology, 31, 36-46.
[37]
Rapin, I. and Tuchman, R.F. (2008) Autism; Definition, Neurobiology, Screening, Diagnisis. Pediatric Clinics of North America, 155, 1129-1146.
[38]
Dhossche, D.M. and Bouman, N.H. (1997) Catatonia in Children and Adolescents. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 870-871.
https://doi.org/10.1097/00004583-199707000-00007
[39]
Dhossche, D. (1998) Brief Report: Catatonia in Autistic Disorders. Journal of Autism and Developmental Disorders, 28, 329-331.
https://doi.org/10.1023/A:1026064720287
[40]
Wing, L. and Shah, A. (2000) Catatonia in Autistic Spectrum Disorders. The British Journal of Psychiatry, 176, 357-362. https://doi.org/10.1192/bjp.176.4.357
[41]
Hare, D.J. and Malone, C. (2004) Catatonia an Autistic Spectrum Disorders. Autism, 8, 183-195. https://doi.org/10.1177/1362361304042722
[42]
De la Cruz, F., Junquera, J. and Russek, M. (1987) Ontogeny of Immobility Reactions Elicited by Clamping, Bandaging and Maternal Transport in Rats. Experimental Neurology, 97, 315-326.
[43]
Flores, G., Silva-Gómez, A.B., Barbeau, D., Srivastava, L.K., Zamudio, S. and De la Cruz-López, F. (2005) Effect of Excitotoxic Lesions of the Neonatal Ventral Hippocampus on the Immobility Response in Rats. Life Sciences, 76, 2339-2348.
[44]
De La Cruz, F. and Uriostegui, T. (1996) The Differential Haloperidol Effect on the Immobility Response Elicited by Clamping, Grasping, Bandaging and Inversion in Guinea Pig, Hamster and Rat. Behavioural Brain Research, 78, 195-199.
[45]
Jaramillo-Loranca, B.E., Garcés-Ramírez, L., Munguía Rosales, A.A., Luna Ramírez, C., Vargas Hernández, G., Morales-Dionisio, O., González-Elizalde, K., Flores, G., Zamudio, S. and De La Cruz-López, F. (2015) The Sigma Agonist 1,3-di-o-tolyl-guanidine Reduces the Morphological and Behavioral Changes Induced by Neonatal Ventral Hippocampus Lesion in Rats. Synapse, 69, 213-225.
https://doi.org/10.1002/syn.21811
[46]
Zamudio, S.R., Quevedo-Corona, L., Garcés, L. and De La Cruz, F. (2009) The Effects of Acute Stress and Acute Corticosterone Administration on the Immobility Response in Rats. Brain Research Bulletin, 80, 331-336.
[47]
Mabunga, D.F., Gonzales, E.L., Kim, J.W., Kim, K.C. and Shin, C.Y. (2015) Exploring the Validity of Valproic Acid Animal Model of Autism. The Journal of Experimental Biology, 24, 285-300.
[48]
Meyer, M.E., Smith, R.L. and Van Hartesveldt, C. (1984) Haloperidol Differentially Potentiates Tonic Immobility, the Dorsal Immobility Response, and Catalepsy in the Developing Rat. Developmental Psychobiology, 17, 383-389.
https://doi.org/10.1002/dev.420170405
[49]
Jaramillo-Loranca, B.E., De la Cruz, F., Vargas, G., Morales-Dionisio, O., Flores, G., Zamudio, S.R. and Garcés-Ramírez, L. (2014) Differential Effect on Two Immobility Responses by Chronic Administration of 1,3-di-o-Tolyl-Guanidine (Sigma Receptor Agonist) in Rats with Neonatal Ventral Hippocampal Lesion. PP, 5, 681-690.
https://doi.org/10.4236/pp.2014.57078
[50]
Teitelbaum, P., Teitelbaum, O., Nye, J., Fryman, J. and Maurer, R.G. (1998) Movement Analysis in Infancy May Be Useful for Early Diagnosis of Autism. Proceedings of the National Academy of Sciences, 10, 13982-13987.
https://doi.org/10.1073/pnas.95.23.13982
[51]
De la Cruz, F., Russek, M. and Junquera, J. (1990) Ontogeny of the Endorphinergic and Dopaminergic Modulation on the Immobility Reflex Elicited by Clamping in Rats. International Journal of Psychophysiology, 9, 171-177.
[52]
Klemm, W.R. (2001) Behavioral Arrest: In Search of the Neural Control System. Progress in Neurobiology, 65, 453-471.
[53]
Ogawa, S., Lee, Y.A., Yamaguchi, Y., Shibata, Y. and Goto, Y. (2017) Associations of Acute and Chronic Stress Hormones with Cognitive Functions in Autism Spectrum Disorder. Neuroscience, 343, 229-239.
[54]
Gallup, G.G. (1974) Animal Hypnosis: Factual Status of a Fictional Concept. Psychological Bulletin, 81, 836-853. https://doi.org/10.1037/h0037227
[55]
Fluck, E., Hogg, S., Jones, R.B., Bourne, R. and File, S.E. (1997) Changes in Tonic Immobility and the GABA-Benzodiazepine System in Response to Handling in the Chick. Pharmacology Biochemistry and Behavior, 58, 269-274.
[56]
Brodal, A. and Saugstad, L.F. (1965) Retrograde Cellular Changes in the Mesencephalic Trigeminal Nucleus in the Cat Following Cerebellar Lesions. Acta Morphologica Neerlando-Scandinavica, 6, 147-159.
[57]
Rodier, P.M., Ingram, J.L., Tisdale, B., Nelson, S. and Romano, J. (1996) Embryological Origin for Autism: Developmental Anomalies of the Cranial Nerve Motor Nuclei. Journal of Comparative Neurology, 370, 247-261.
https://doi.org/10.1002/(SICI)1096-9861(19960624)370:2<247::AID-CNE8>3.0.CO;2-2
[58]
Brewster, J. and Leon, M. (1980) Facilitation of Maternal Transport by Norway Rat Pups. Journal of Comparative and Physiological Psychology, 94, 80-88.
https://doi.org/10.1037/h0077645
[59]
Hellings, J.A., Arnold, L.E. and Han, J.C. (2017) Dopamine Antagonists for Treatment Resistance in Autism Spectrum Disorders: Review and Focus on BDNF Stimulators Loxapine and Amitriptyline. Expert Opinion on Pharmacotherapy, 18, 581-588. https://doi.org/10.1080/14656566.2017.1308483
[60]
Realmuto, G.M. and August, G.J. (1991) Catatonia in Autistic Disorder: A Form of Comorbidity or Variable Expression. Journal of Autism and Developmental Disorders, 21, 517-528. https://doi.org/10.1007/BF02206874
[61]
Wing, L. and Shah, A. (2006) A Systematic Examination of Catatonia-Like Clinical Pictures in Autism Spectrum Disorders. International Review of Neurobiology, 72, 21-39.
[62]
Gillberg, C. and Billstedt, E. (2000) Autism and Asperger Syndrome: Coexistence with Other Clinical Disorders. Acta Psychiatrica Scandinavica, 102, 321-330.
https://doi.org/10.1034/j.1600-0447.2000.102005321.x
[63]
Nijmeijer, J.S., Hoekstra, P.J., Minderaa, R.B., Buitelaar, J.K., Altink, M.E., Buschgens, C.J.M., Fliers, E.A., Rommelse, N.N., Sergeant, J.A. and Hartman, C.A. (2008) PDD Symptoms in ADHD, an Independent Familial Trait? Journal of Abnormal Child Psychology, 37, 443-453. https://doi.org/10.1007/s10802-008-9282-0
[64]
Reiersen, A.M., Constantino, J.N., Grimmer, M., Martin, N.G. and Todd, R.D. (2008) Evidence for Shared Genetic Influences on Self-Reported ADHD and Autistic Symptoms in Young Adult Australian Twins. Twin Research and Human Genetics, 11, 579-585. https://doi.org/10.1375/twin.11.6.579
[65]
Mulligan, A., Anney, R.J.L., O’Regan, M., Chen, W., Butler, L., Fitzgerald, M., Buitelaar, J., Steinhausen, H.C., Rothenberger, A., Minderaa, R., Nijmeijer, J., Hoekstra, P.J., Oades, R.D., Roeyers, H., Buschgens, C., Christiansen, H., Franke, B., Gabriels, I., Hartman, C., Kuntsi, J., Marco, R., Meidad, S., Mueller, U., Psychogiou, L., Rommelse, N., Thompson, M., Uebel, H., Banaschewski, T., Ebstein, R., Eisenberg, J., Manor, I., Miranda, A., Mulas, F., Sergeant, J., Sonuga-Barke, E., Asherson, P., Faraone, S.V. and Gill, M. (2009) Autism Symptoms in Attention-Deficit/Hyperactivity Disorder: A Familial Trait Which Correlates with Conduct, Oppositional Defiant, Language and Motor Disorders. Journal of Autism and Developmental Disorders, 39, 197-209. https://doi.org/10.1007/s10803-008-0621-3
[66]
Schneider, T., Roman, A., Basta-Kaim, A., Kubera, M., Budziszewska, B., Schneider, K. and Przewlocki, R. (2008) Gender-Specific Behavioral and Immunological Alterations in an Animal Model of Autism Induced by Prenatal Exposure to Valproic acid. Psychoneuroendocrinology, 33, 728-740.
[67]
Tordjman, S., Anderson, G.M., Botbol, M., Brailly-Tabard, S., Perez-Diaz, F., Graignic, R., Carlier, M., Schmit, G., Rolland, A.C., Bonnot, O., Trabado, S., Roubertoux, P. and Bronsard, G. (2009) Pain Reactivity and Plasma Beta-Endorphin in Children and Adolescents with Autistic Disorder. PLoS ONE, 4, e5289.
[68]
Duvekot, J., van der Ende, J., Verhulst, F.C., Slappendel, G., van Daalen, E., Maras, A. and Greaves-Lord, K. (2017) Factors Influencing the Probability of a Diagnosis of Autism Spectrum Disorder in Girls versus Boys. Autism, 21, 646-658.
https://doi.org/10.1177/1362361316672178
[69]
Irimia, A., Torgerson, C.M., Jacokes, Z.J. and Van Horn, J.D. (2017) The Connectomes of Males and Females with Autism Spectrum Disorder Have Significantly Different White Matter Connectivity Densities. Scientific Reports, 7, Article No. 46401. https://doi.org/10.1038/srep46401