全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Structure and Textures of Anhydrite Mineral in Gachsaran Formation in Gotvand Area, Iran

DOI: 10.4236/ojg.2017.710099, PP. 1478-1493

Keywords: Gachsaran Formation, Lower Miocene, Evaporation, Anhydrite

Full-Text   Cite this paper   Add to My Lib

Abstract:

Minerals are deposited when evaporation is greater than atmospheric precipitation. Calcium sulfates are one of the most important evaporative minerals which have been expanding over the past few years. In the formation of these minerals, various sedimentary and diagenetic processes play a role from shallow ridges to deep water. The research investigated the types of evaporative minerals (with an emphasis on anhydrite) in Gachsaran Formation in Gotvand dam range (25 km north of Shoushtar city). Investigating the thin sections of evaporative samples of this formation led to the identification of various anhydrite textures. Also, the existence of the main phases of calcium sulfate and NaCl by XRD analyses on a number of samples. The formation of anhydrite, gypsum and halite minerals in Gachsaran Formation in Lagoon and Sabkha environments was identified texture. The most important textures were laths anhydrite, nodule, isolated, radial anhydrite crystals, and porphyroblastic gypsum crystals, most of which are formed at the same stage of precipitation or in the early stages of diagenesis.

References

[1]  Warren, J.K. (2006) Evaporates: Sediments, Resources and Hyrocarbons. Springer-Verlag, Berlin, 1035.
https://doi.org/10.1007/3-540-32344-9
[2]  Schreiber, B.C. and El Tabakh, M. (2000) Deposition and Early Alteration of Evaporates. Sedimentary Geology, 47, 215-238.
https://doi.org/10.1046/j.1365-3091.2000.00002.x
[3]  Schreiber, B.C. and Helman, M.L. (2005) Criteria for Distinguishing Primary Evaporate Feature from Deformation Features in Sulfate Evaporates. Journal of Sedimentary Research, 75, 525-533.
https://doi.org/10.2110/jsr.2005.043
[4]  Bugge, T., Ringas, E., Leith, D.A., Mangerud, G., Weiss, H.M. and Leith, T.L. (2002) Upper Permian as a New Play Model on the Mid-Norwegian Continental Shelf: Investigated by Shallow Stratigraphic Drilling. AAPG Bulletin, 86, No. 1.
[5]  Warren, J.K. (1989) Evaporate Sedimentology: University of Texas at Austin. 4-62.
[6]  Tucker, M.E. (1999) Sabkha Cycles, Stacking and Controls, Gachsaran (Lower Fars/Fata) Formation, Miocen, Mesopotamian Basin, Iraq. Neuesjahrbuch Geologist And Paleontologist Abhand Lung, 124, 45-69.
[7]  Rodriguez-Estrella, T. and Pulido-Bosch, A. (2010) Gypsum Karst Evolution in a Diaper: A Case Study (Pinoso, Alicante, Spain). Environmental Earth Sciences, 59, 1057-1063.
https://doi.org/10.1007/s12665-009-0097-2
[8]  Maximovich, N.G. and Meshcheryakova, O.Y.O. (2009) The Influence of Gypsum Karst on Hydrotechnical Construction in Perm Region.
[9]  Torabi-Kaveh, M., Heidari, M., Mohammadi-Behzad, H.R. and Miri, M. (2011) Effect of Dissolved Sodium Chloride Content in Water on the Dissolution of Gypseous Rock (Case Study: Chamshir Dam Reservoir, SW Iran). Australian Journal of Basic and Applied Sciences, 5, 1418-1424.
[10]  Torabi-Kaveh, M., Heidari, M., and Miri, M. (2012) Karstic Features in Gypsum of Gachsaran Formation (Case Study: Chamshir Dam Reservoir, SW Iran). Carbonates and Evaporites, 27, 291-297.
https://doi.org/10.1007/s13146-012-0090-9
[11]  Nabavi, M.H. (1976) A Preface to Iran’s Geology. Geology Survey & Mineral Exploration of Iran, 109.
[12]  Motiei, H. (1991) Zagros Stratigraphy. Geology Survey & Mineral Exploration of Iran, 536.
[13]  Rahimpour-Bonab, H. and Kalantarzadeh, Z. (2005) Origin of Secondary Potas Deposits; A Case from Miocene Evaporites of NW Central Iran. Journal of Asian Earth Sciences, 25, 157-166.
[14]  James, G.A. and Wyned, J.D. (1965) Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. American Association of Petroleum Geologists Bulletin, 49, 2182-2245.
[15]  Taberner, C., Cendon, D.I., Pueyo, J.J. and Ayora, C. (2000) The Use of Environmental Markers to Distinguish Marine vs. Continental Deposition and to Quantify the Significance of Recycling in Evaporite Basins. Sedimentary Geology, 137, 213-240.
[16]  Kendall, A.C. (1984) Evaporites. In: Walker, R.G., Ed., Facies Models: Geoscience Reprint Series 1, Geological Association of Canada, Newfoundland, 259-296.
[17]  Tucker, E.G. and Slingerland, R. (1997) Drainage Basin Responses to Climate Change. Water Resources Research, 33, 2031-2047.
[18]  Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Blackwell Scientific Publications, London, 482.
https://doi.org/10.1002/9781444314175
[19]  Flugel, E. (2010) Micro Facies Analysis of Carbonate Rocks. Analyses, Interpretation and Application. Springer Verlag, Berlin, 976.
[20]  Van Wagoner, J.C., Mitchum, R.M., Campion, K.M. and Rahmanian, V.D. (1990) Siliciclastic Sequence Stratigraphy in Well Logs, Cores and Outcrop: Concepts for High Resolution Correlation of Time and Facies. American Association of Petroleum Geologists Bulletin Method ExplorSer 7, 55.
[21]  Emery, D. and Myers, K. (1996) Sequence Stratigraphy. Blackwell Scientific Publications, Oxford, 297.
https://doi.org/10.1002/9781444313710
[22]  Miall, A.D. (1999) Principles of Basin Analysis. 3rd Edition, Springer-Verlag, Berlin, 616.
[23]  Catuneanu, O. (2006) Principles of Sequence Stratigraphy. Elsevier, Amsterdam, 375.
[24]  Zamannejad, A., Jahani, D., Lotfpour, M. and Movahed, B. (2013) Mixed Evaporite/Carbonate Characteristics of the Triassic Kangan Formation, Offshore Area, Persian Gulf. Revista Mexicana de Ciencias Geológicas, 30, 540-551.
[25]  Aleali, M., Rahimpour-Bonab, H., Moussavi-Harami, R., Jahani, D., et al. (2013) Environmental and Sequence Stratigraphic Implications of Anhydrite Textures: A Case from the Lower Triassic of the Central Persian Gulf. Journal of Asian Earth Sciences, 75, 110-125.
[26]  Schreiber, B.C. and Kinsman, D.J.J. (1975) New Observations on the Pleistocene Evaporates of Montallegro, Sicily and a Modern Analog. Journal of Sedimentary Petrology, 45, 469-479.
[27]  Alsharhan, A. and Kendall, C.G.C. (2011) Introduction to Quaternary Carbonate and Evaporate Sedimentary Facies and Their Ancient Analogues. International Association of Sedimentologists, 43, 1-10.
[28]  Kendall, A.C. and Harwood, G.M. (1996) Marine Evaporates, Arid Shorelines and Basins. In: Reading, H.G., Ed., Sedimentary Environments, Facies and Stratigraphy, Blackwell Scientific Publication, Oxford, 281-324.
[29]  Michalzic, D. (1996) Lithofacies, Diagenetic Spectra and Sedimentary Cycles of Messinian Late Miocene-Evaporate in SE Spaine. Sedimentary Geology, 106, 203-222.
[30]  Biernacka, J., Borysiuk, K. and Raczynski, P. (2005) Zechstein Ca1 Limestone-Marl Alternations from the North-Sudetic Basin Poland, Depositional or Diagenetic Rhythms? Geological Quarterly, 49, 1-14.
[31]  Erlick, M. (1996) Sequence Stratigraphy and Platform Evolution of Lower-Middle Devonian Carbonates Eastern Great Basin. Geological Society of America Bulletin, 103, 392-416.
[32]  El Tabakh, M., Mory, A., Schreiber, B.C. and Yasin, R. (2004) Anhydrite Cement after Dolomitezation of Shallow Marine Silurian Carbonate of the Gascoyne Platform, Southern Carnnarvon Basin, Western Australia. Sedimentary Geology, 164, 75-87.
[33]  Warren, W.J. (2000) Dolomite: Occurrence and Economically Important Association. Earth Science Review, 1-18.
[34]  Sonnefeld, P. (1980) Brines & Evaporates. Academic Press, Orlanda, 613.
[35]  Kasprzyk, A. (2005) Diagenetic Alteration Deposits in the Carpathian Fore Deep Basin, Southern Poland: Process and Their Succession. Geological Quaternary, 49, 305-316.
[36]  Yechieli, Y. and Wood, W.W. (2002) Hydro Geologic Processes in Saline Systems, Playas, Sabkhas and Saline Lake. Earth Science Reviews, 58, 343-365.
[37]  Einsele, G. (2000) Sedimentary Basin, Evolution, Facies, and Sediment Budget. Springer-Verlag, Berlin, Heidelberg, 792.
[38]  Bahroudi and Koyi, H.A. (2004) Tectono-Sedimentary Framework of the Gachsaran Formation in the Zagros Foreland Basin. Marine and Petroleum Geology, No. 21, 1295-1310.
[39]  Tucker, M.E. (2001) Sedimentary Petrology. 3rd Edition, Blackwell, Oxford, 260.
[40]  Mial, A.D. (1997) The Geology of Stratigraphy Sequence. Springer-Verlag, Berlin, 433.
https://doi.org/10.1007/978-3-662-03380-7
[41]  Kinsman, D.J.J. (1969) Models of Formation, Sedimentary Association and Diagenetic Features of Shallow-Water and Super Tidal Evaporates. American Association of Petroleum Geologists Bulletin, 53, 830-840.
[42]  Alsharhan, A.S. and Kendall, C.G.St.C. (2003) Holocene Coastal Carbonates and Evaporates of the Southern Arabian Gulf and Their Ancient Analogues. Earth-Science Reviews, 61, 191-243.
[43]  Al-Marsoumi, A.M. (2009) Geology of Miocene Gypsum Deposits in Northern Iraq. Baserah Journal of Science, 27, 17-39.
[44]  Meyer, F.O. (2005) Anhydrite Classification According to Structure.
http://www.crienterprises.com/Edu_Classif_Evahtml
[45]  Lucia, F.J. (1999) Carbonate Reservoir Characterization. Springer, New York, 226.
https://doi.org/10.1007/978-3-662-03985-4
[46]  Warren, J.K. (1999) Evaporates: Their Evolution and Economics. Blackwell Scientific, Oxford, 438.
[47]  Shearman, D.J. (1978) Evaporates of Coastal Sabkhas. In: Dean, W.E. and Schreiber, B.C., Eds., Marine Evaporates: SEPM Short Course No. 4 Oklahoma City 1978, Society of Economic Paleontologists and Mineralogists, Tulsa, 6-42.
https://doi.org/10.2110/scn.78.01.0006
[48]  Hardie, L.A. and Eugster, H.P. (1970) The Evolution of Closed-Basin Brines. Mineralogical Society of America, 253-273.
[49]  Hovorka, S.D. (1992) Halite Pseudo Morphs after Gypsum in Bedded Anhydrite Due to Gypsum-Anhydrite Relationships. Journal of Sedimentary Petrology, 62, 1098-1111.
[50]  Gundogan, I., Mehmet, O. and Tolga, D. (2005) Sedimentology, Petrography and Diagenesis of Eocene-Oligocene Evaporates: The Tuzhisar Formation, SW Sivas Basin, Turkey. Journal of Asian Earth Sciences, 25, 791-803.
[51]  Machel, H.G. (2005) Investigations of Burial Diagenesis in Carbonate Hydrocarbon Reservoir Rocks. Geoscience Canada, 32, 103-128.
[52]  Kasprzyk, A. and Orti, F. (1998) Palegeographic and Burial Controls on Anhydrite Genesis: The Badenian Basin in the Carpthian Fore Deep (Southern Poland, Western Ukarine). Sedimentology, 45, 889-907.
https://doi.org/10.1046/j.1365-3091.1998.00190.x
[53]  Warren, J.K. and Kendall, C.G.St.C. (1985) Comparison of Marine (Sub Aerial) and Salina (Subaqueous) Evaporates: Modern and Ancient. American Association of Petroleum Geologists Bulletin, 69, 1013-1023.
[54]  Kasprzyk, A. (2003) Sedimentological and Diagenetic Patterns of Anhydrite Deposits in the Badenian Evaporate Basin of the Carpathian Fore Deep, Southern Poland. Sedimentary Geology, 158, 167-194.
[55]  Holliday, D.W. (1970) The Petrology of Secondary Gypsum Rocks: A Review. Journal of Sedimentary Petrology, 40, 734-744.
https://doi.org/10.1306/74D7202C-2B21-11D7-8648000102C1865D
[56]  Testa, G. and Lugli, S. (2000) Gypsum-Anhydrite Transformations in Messinian Evaporates of Central Tuscany (Italy). Sedimentary Geology, 130, 249-268.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133