Major peninsular rivers debouching into the Bay of Bengal through 2729 km long east coast of India, carry enormous inland flow and sediment from their alluvial basins. Present climate changes, storm irregularities and tsunamis have changed the hydrology of the coastal rivers. The hydrologic interventions for human need have reduced the sediment flow of the rivers resulting in sinking the deltas. Twelve important river basins in the east coast of India were identified. Linear and nonlinear regression equations were developed by stochastic approach of their annual flow (1986-2011) and yearly sediment influx (1993-2012) for the 12 rivers at their delta head. As results, the annual flow of the rivers from Subarnarekha to Godavari followed rational curves except the Brahmani River and Gaussian models for rivers from the Godavari to south except the river Vaigai. Similarly, the curve fitting models of time series for sediment had shown a change in curve pattern, the river Godavari being the line of demarcation. Gumbel II and Log Pearson type III methods were used to predict the flow and the sediment at various probabilities. Sediment prediction by Gumbel method had shown lower values than Log Pearson Type III methods for planning and design of hydraulic structures. The disparities in geologic formation of the central India and Deccan Plateau can be emphasized based on the statistical interpretations.
References
[1]
Ministry of Water Resources. (2005) Govt. of India, Integrated Hydrological Data Book (Non-Classified Basins), Hydrological Data Directorate, Information Systems Organisation, Water Planning & Projects Wing, Central Water Commission, New Delhi.
[2]
Kulkarni, J.R. and Srivastav, U.K. (1991) A Systems of Network of Marine Foods Industry in India, M. Visveswaraya Industrial Research and Development Centre, Bombay, IIM, Ahamadabad. Concept Publishing Company, New Delhi, 73-82.
[3]
Chandramohan, P., Jena, B.K. and Sanil Kumar, V. (2001) Littoral Drift Sources and Sinks along the Indian Coast. Current Science, 81, 292-297.
[4]
Mohapatra, M. and Subramanian, S.K. (2010) Interannual Variation of Frequency of Cyclonic Disturbances Landfalling over India. India Meteorological Department, New Delhi.
[5]
Fuloria, R.C. (1993) Geology and Hydrocarbon Prospect of Mahanadi Basin, India. In: Biswas, S.K., et al., Eds., Proceedings of the 2nd Seminar on “Petroliferous Basin in India”, Vol. 3, Indian Petroleum, Publication Dehra Dun, 355-369.
[6]
Tandon, S.K. and Sinha, R. (2009) Geology of Large River Systems. In: Gupta, A., Ed., Large Rivers: Geomorphology and Management, John Wiley & Sons, Ltd., New York, 7-28.
[7]
Lal, N.K., Siawal, A. and Kaul, A.K. (2009) Evolution of East Coast of India—A Plate Tectonic Reconstruction. Journal of the Geological Society of India, 73, 249-260.
[8]
Mahalik, N.K., Das, C. and Maejima, W. (1996) Geomorphology and Evolution of the Mahanadi Delta, India. Journal of Geosciences, 39, 3-122.
[9]
Kumaran, K.P.N., Limay, R. and Padmalal, D. (2012) India’s Fragile Coast with Special Reference to Late Quarterynary Dynamics. Proceeding of Indian National Science Academy, 78, 343-352.
[10]
Kakani, N., et al. (2003) Reconstruction of the Late Holocene Progradation, Godavari Delta, India, a Preliminary Study. Transactions, Japanese Geomorphological Union, 24, 295-309.
[11]
Prabakaran, K. and Anbarasu, K. (2010) Evolution of Vaigai Delta, Tamilnadu, India (East Coast) during Quaternary. International Journal of Geomatics and Geosciences, 1, 211-222.
[12]
Sundaresh, Mani Murali, R., Seelam, J.K. and Gaur, A.S. (2014) Shoreline Changes along Tamilnadu Coast: A Study Based on Acrcheological and Coastal Dynamics Prospective. Indian Journal of marine Science, 43, 343-352.
[13]
India—IWRS WIKI (2014) Water Resources Information of India, Last Modified.
http://www.india-wris.nrsc.gov.in/wrpinfo/index.php
[14]
Milliman, J.D. and Syvitski, J.P.M. (1992) Geomorphic/Tectonic Control of Sediment Discharge to the Ocean: The Importance of Small Mountainous Rivers. The Journal of Geology, 100, 525-544. https://doi.org/10.1086/629606
[15]
Syvitski, J.P.M. and Morehead, M.D. (1999) Estimating River-Sediment Discharge to the Ocean: Application to the Eel Margin, Northern California. Marine Geology, 154, 13-28. https://doi.org/10.1016/S0025-3227(98)00100-5
[16]
Zhou, Z. and Tong, Y. (2015) Case Study on Sediment Management and Wetland Conservation at Yellow River Mouth. The International Research and Training Center on Erosion and Sedimentation, Beijing.
[17]
Gamage, N. and Smakhtin, V. (2009) Do River Deltas in East India Retreat? A Case Study of the Krishna Delta. Geomorphology, 103, 533-540.
https://doi.org/10.1016/j.geomorph.2008.07.022
[18]
Rao, K.N., Subraelu, P., Naga Kumar, K.Ch.V., Demudu, G., Hema Malini, B., Rajawat, A.S., et al. (2010) Impacts of Sediment Retention by Dams on Delta Shoreline Recession: Evidences from the Krishna and Godavari Deltas, India. Earth Surface Processes and Landforms, 35, 817-827. https://doi.org/10.1002/esp.1977
[19]
Syvitski, J.P.M., Kettner, A.J., Overeem, I., Hutton, E.W.H.., Hannon, M.T., Brakenridge, G.R., Day, J., et al. (2009) Sinking Deltas Due to Human Activities. Nature Geoscience, Macmillan Publishers Limited, Basingstoke.
http://www.nature.com/naturegeoscience
[20]
Syvitski, J.P.M. and Kettner, A. (2011) Sediment Flux and the Anthropocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 957-975. https://doi.org/10.1098/rsta.2010.0329
[21]
Gupta, H., Kao, S. and Dai, M. (2012) The Role of Mega Dams in Reducing Sediment Fluxes: A Case Study of Large Asian Rivers. Journal of Hydrology, 464, 447-458.
https://doi.org/10.1016/j.jhydrol.2012.07.038
[22]
Dandekar, P. (2014) Shrinking and Sinking Deltas: Major Role of Dams in Delta Subsidence and Effective Sea Level Rise. South Asia Network on Dams Rivers and People, 1-14.
[23]
Sanil Kumar, V., Pathak, K.C., Pednekar, P., Raju, N.S.N. and Gowthaman, R. (2006) Coastal Processes along the Indian Coastline. Current Science, 91, 534.
[24]
Vogel, R.M., Thomas, W.O. and McMahon, T.A. (1993) Flood-Flow Frequency Model Selection in Southwestern United States. Journal of Water Resources Planning and Management, 119, Paper No. 3787, 353-366.
https://doi.org/10.1061/(ASCE)0733-9496(1993)119:3(353)
[25]
Topalogu, F. (2002) Determining Suitable Probability Distribution Models for Flow and Precipitation Series of the Seyhan River Basin. Turkish Journal of Agriculture, 26, 189-194.
[26]
Luo, P., He, B., Chaffe, P.L., Nover, D., Takara, K. and Mohd Remy Rozainy, M.A. (2013) Statistical Analysis and Estimation of Annual Suspended Sediments of Major Rivers in Japan. Environmental Science: Processes & Impacts, 15, 1052-1061.
https://doi.org/10.1039/c3em30777h
[27]
Solomon, O. and Ogbeifun, P. (2013) Flood Frequency Analysis of Osse River Using Gumbel’s Distribution. Civil and Environmental Research, 3, 55-59.
[28]
Ghosh, K.G. and Mukhopadhyay, S. (2015) Hydro-Statistical Analysis of Flood Flows with Particular Reference to Tilpara Barrage of Mayurakshi River, Eastern India. ARPN Journal of Earth Sciences, 4, 76-88.
[29]
Mishra, S.P. and Jena, J.G. (2015) Analytical Study of Monsoon Rainfall South Mahanadi Delta and Chilika Lagoon, Odisha. International Journal of Engineering and Technology (IJET), 7, 985-996.
[30]
Central Water Commission, Ministry of Water Resources, Government of India (2006, 2007, 2009, 2012, 2015) Integrated Hydrological Data Book, (Non-Classified River Basins), Hydrological Data Directorate. Information Systems Organization, Water Planning & Projects Wing, Central Water Commission, New Delhi.
[31]
Al-Mashidani, G., Lal, P.B.B. and Fattah Mujd, M. (1978) A Simple Version of Gumbel’s Method for Flood Estimation. Hydrological Sciences Bulletin, 23, 373-380.
https://doi.org/10.1080/02626667809491810
[32]
Mujere, N. (2011) Flood Frequency Analysis Using the Gumbel Distribution. International Journal on Computer Science and Engineering (IJCSE), 3, 2774-2779.
[33]
Nnaji, G.A., Huang, W., Gitau, M.W. and Clark II, C. (2014) Frequency Analysis of Minimum Ecological Flow and Gage Height in Suwannee River, Florida. Journal of Coastal Research: Special Issue 68—Climate Change Impacts on Surface Water Systems, 152-159. https://doi.org/10.2112/SI68-020.1