全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Energy Transfer in Triple Semiconductor-Organic Hybrid Structures

DOI: 10.4236/snl.2017.71001, PP. 1-15

Keywords: Excitons, Hybrid, Organics, Semiconductor, Nanostructures, Pumping

Full-Text   Cite this paper   Add to My Lib

Abstract:

With aim to increase set of modern commercial optoelectronic devices we investigate the optical properties of new triple semiconductor-organics-semiconductor nanostructure having two semiconductor layers with organic layer between. This will be development to majority of modern publications with investigations of only double hybrid nanostructures with one contacting semiconductor layer and one organic layer. It is supposed that the energy of exciton in the first layer is larger than the energy of exciton in organic layer and that the energy of exciton in organic layer is larger in comparison with energy of exciton in second semiconductor layer. It was shown that installation of organics leads to some frequencies at different parameters or to reflection increasing and transmission decrease or to reverted dependence. New recurrent method of inverted calculation for fields is proposed and using this method the frequency dependences of optical characteristics have been calculated. The role of second semiconductor layer in considered triple structure has been estimated.

References

[1]  Agranovich, V.M., Gartstein, Yu.N. and Litinskaya, M. (2011) Hybrid Resonant Organic-Inorganic Nanostructures for Optoelectronic Application. Chemical Reviews, 111, 5179-5214. https://doi.org/10.1021/cr100156x
[2]  Blumenstegel, S., Sadofev, S, Xu, S.C., Puls, J., and Henneberger, F. (2006) Converting Wannier into Frenkel Exciton in an Inorganic-Organic Hybrid Semiconductor Nanostructure. Physical Review Letters, 97, 247401.
[3]  Acherman, M., Petruska, M.A., Kos, S., Smith, D.I., Koleske, D.D. and Klimov, V.I. (2004) Energy-Transfer Pumping of Semiconductor Nanocrystals Using an Epitaxial Quantum Well. Nature, 429, 642. https://doi.org/10.1038/nature02571
[4]  Rohmoser, S., Baldauf, J., Harley, R.T., Lagoudakis, P.J., Sapra, S., Euchmuller, A. and Watson, I.M. (2007) Temperature Dependence of Exciton Transfer in Hybrid Quantum Well/Nanocrystal Heterostructures. Applied Physical Letters, 91, Article ID: 92126.
[5]  Blumenstegel, S, Sadofev, S., Puls, J. and Henneberger, F. (2009) An Inorganic/Organic Semiconductor “Sandwich” Structure Grown by Molecular Beam Epitaxy. Advanced Matterials, 21, 4850. https://doi.org/10.1002/adma.200900703
[6]  Itskos, G., Heliotis, G., Lagoudakis, P.G., Lupton, J., Barradas, N.P., Alves, E., Pereira, S., Watson, I.M., Dawson, M.D., Feldman, J., Murray, R. and Bradley, D.D.C. (2007) Efficient Dipole-Dipole Coupling of Mott-Wannier and Frenkel Excitons in (Ga, In) N Quantum Well/Polyfluorene Semiconductor Heterostructures. Physical Review B, 76, Article ID: 035344. https://doi.org/10.1103/PhysRevB.76.035344
[7]  Zhang, Q., Atay, T., Tischler, J.R., Bradley, M.S., Bulovic, V. and Nurmikko, A.V. (2007) Highly Efficient Resonant Coupling of Optical Excitations in Hybrid Organic/Inorganic Semiconductor Nanostructures. Nature Nanotechnology, 2, 555. https://doi.org/10.1038/nnano.2007.253
[8]  Ema, K., Inomata, M., Kato, Y., Kunigita, H. and Era, M. (2008) Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials. Physical Review Letters, 100, Article ID: 257401.
https://doi.org/10.1103/PhysRevLett.100.257401
[9]  Ema, K., Umeda, K., Toda, M., Yajima, C., Arai, Y., Kunugita, H., Wolverson, D. and Davies, J.J. (2006) Huge Exchange Energy and Fine Structure of Excitons in an Organic-Inorganic Quantum Well Material. Physical Review B, 73, Article ID: 241310.
https://doi.org/10.1103/PhysRevB.73.241310
[10]  Smith, R., Liu, B., Bai, J. and Wand, T. (2013) Hybrid III-Nitride/Organic Semiconductor Nanostructure with High Efficiency Nonradiative Energy Transfer for White Light Emitters. Nano Letters, 13, 3042. https://doi.org/10.1021/nl400597d
[11]  Schlesinger, R., Bianchi, F., Blumstenger, S., Christodoulou, C., Hennenberger, F. and Koch, N. (2015) Efficient Light Emission from Inorganic and Organic Semiconductor Hybrid Structures by Energy-Level Tuning. Nature Communications, 6, 6754. https://doi.org/10.1038/ncomms7754
[12]  Agranovich, V.M., Benisti, H. and Weisbuch, C. (1997) Organic and Inorganic Quantum Wells in Microcavity: Frenkel-Wannier-Mott Excitons Hybridization and Energy Transformations. Solid State Communications, 102, 631-636.
[13]  Dubovskiy, O.A. and Agranovich, V.M. (2017) To the Theory of Hybrid Organic/Semiconductor Nanostructures in Microcavity. Solid State Communications, 251, 66-72.
[14]  Kliever, K.L. and Fuchs, R. (1966) Optical Modes of Vibration in an Ionic Crystal Slab Including Retardation. I. Non radiation Region. Physical Review, 144, 4955-4503.
[15]  Kliever, K.L. and Fuchs, R. (1966) Optical Modes of Vibration in an Ionic Crystal Slab Including Retardation. II. Radiation Region. Physical Review, 150, 573-588.
https://doi.org/10.1103/PhysRev.150.573
[16]  Veldhuis, S.A., Boix, P.P., Yantaro, N., Li, M., Sum, T.C., Mathews, N. and Mhaisalkar, S.G. (2016) Perovskite Materials for Light-Emitting Diodes and Lasers. Advanced Materials, 28, 6804-6834. https://doi.org/10.1002/adma.201600669

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133